descriptive bulletin
Single-phase overhead distribution switches
Types DCD, RBD, SID, LSID, and ITD

ABB single-phase overhead distribution switches are used on electrical distribution systems to sectionalize or isolate circuits, bypass equipment for maintenance, provide personnel protection, show visible indication of disconnect, and more.

Table of contents

004-005 DCD distribution class disconnect switch

006-007 RBD distribution class bypass disconnect switch

008-009 SID disconnect switch

010-011 LSID disconnect switch
012-013 ITD inline tension disconnect switch

DCD distribution class disconnect switch

DCD unit dimensions

Voltage class (kV)	$\begin{aligned} & \text { BIL } \\ & (k V) \end{aligned}$	A		B		C		D		E		F		G		Porcelain weight		Silicone weight	
		(in)	(mm)	(lb)	(kg)	(lb)	(kg)												
15	110	25.17	639	12.29	312	8.00	203	13.32	338	12.35	313	22.85	580	4.63-6.77	118-172	33 (600 A)	15	19 (600 A)	8.7
27	125	28.56	725	15.08	383	9.00	229	14.31	364	15.90	404	26.00	660	6.38-8.47	162-215	40 (600 A)	18	22 (900 A)	10
38	150	28.86	725	15.08	383	10.0	254	15.32	389	15.90	404	26.00	660	6.38-8.47	162-215	42 (600 A)	19	24 (900 A)	11

Rated voltage BIL (kV) (kV)		Creep				Strike			
		Porcel	ain	Silicon		Porce	lain	Silicon	
		(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
15	110	17.60	441	19.53	496	7.71	196	7.79	198
27	125	22.95	583	28.30	719	8.55	217	9.26	234
38	150	23.87	606	39.52	1003	9.81	249	10.62	270

DCD ratings

Maximum voltage (kV)	BIL (kV)	Continuous current (A)	Peak withstand current (kA Asym)
15	110	$600 / 900$	65
27	125	$600 / 900$	65
38	150	$600 / 900$	65

DCD selection guide

Description	Code	Definition
Switch type	S	Type DCD switch
	1	$15 \mathrm{kV}, 110 \mathrm{kV} \mathrm{BIL}$
	2	$27 \mathrm{kV}, 125 \mathrm{kV}$ BIL
Max kV, BIL	5	38 kV , 150 kV BIL
	N	No stop
	A	90° stop
Blade stop	B	160° stop
	P	Porcelain
Insulators	J	Silicone
	A	NEMA 2-hole with captured 0.5" hardware (galvanized)
	C	NEMA 2-hole with two-piece clamshell \#2-500MCM
	N	NEMA 2-hole pad - standard
Terminal connectors	H	NEMA 2-hole with two-piece clamshell 4/0-500MCM
	S	Smooth slots in base for 0.5 " carriage bolts
Base	C	Serrated slots in base for .375" carriage bolts
	N	No back bracket
	8	Two 8" long, .375-16 carriage bolts with back bracket and hardware
	1	Two 10" long, .375-16 carriage bolts with back bracket and hardware
	A	Four 8" long, . 375-16 carriage bolts with back bracket and hardware
Mounting brackets	B	Four 10" long, .375-16 carriage bolts with back bracket and hardware
Unused	N	Space holder for future options
Continuous current	6	600 amperes
	9	900 amperes
	0	None
Specials	B	Stainless steel nameplate

Example: S2BJNC1N60 = DCD, $27 \mathrm{kV}, 125 \mathrm{kV}$ BIL, 160° stop, silicone insulators, standard NEMA 2-hole pads, base with serrated slots, back bracket with two 10 carriage bolts and hardware, 600 A , no specials DCD mounting configuration
-

DCD mounting configurations

-
Vertical or underhung

-
Single crossarm

Polemount

RBD distribution class bypass disconnect switch

-
RBD unit dimensions

Product features

- Base and back strap: strengthened channel of galvanized steel for corrosion protection and solid operation
- Insulators available in silicone or porcelain
- Self-aligning silver to silver contacts help ensure long life
- Entire blade is silver-plated copper
- Loadbreak hooks made of galvanized steel for corrosion protection, to be used with loadbreak tool
- Bypass blade is left-hand or right-hand operation
- Standard two-hole NEMA plated pad or optional two-piece parallel groove
- All testing is in accordance with IEEE 37.34 (consolidated into IEEE 37.30.1)
- Hinges are not used to carry current leading to improved operation and reliability
- Available in three-phase configuration (3 RBDs mounted on a crossarm)

Application

The RBD distribution bypass disconnect switch provides an economical means for bypassing and disconnecting reclosers or other equipment, allowing quick system reconfigurations to perform maintenance or bypass any device without interrupting service.

Operation

In normal operation, the bypass blade is open and the two disconnect blades are closed, allowing the unit to be energized. When maintenance, testing, repair, or removal is required, first close the bypass blade to provide a parallel current path; then open both disconnect blades of the bypass switch. Service continuity is maintained and the unit is isolated from the line. Reverse the process to put the unit back in service.

Blade operation

A blade stop limits the blade range of motion to either 90° or 160° positions, and a latch prevents the switch from opening under high momentary current.

Mounting

The RBD can be mounted in the following configurations:

- Vertical or underhung
- Polemount
- Single or double crossarm

Voltag class (kV)	$\begin{aligned} & \text { BIL } \\ & \hline(k V) \end{aligned}$	A		B		C		D		E		F		G		H		1		Porcelain weight		Silicone weight	
		(in)	(mm)	(lb)	(kg)	(lb)	(kg)																
15	110	12.22	310	12.50	317	20.86	530	14.03	356	8.0	203	22.6	574	22.49	571	11.43	290	5.50	140	91	41	54	24
27	125	15.63	397	15.90	404	23.43-27.21	595-691	14.83	377	9.0	229	26.25	667	26.79-27.13	682-689	13.13	333	5.50	140	99	45	60	27
38	150	15.63	397	15.90	404	23.43-27.21	595-691	15.83	402	10.0	254	26.25	667	26.79-27.13	682-689	13.13	333	5.50	140	103	47	65	29

-

RBD insulator details

Rated voltage	BIL	Creep				Strike			
		Porcelain		Silicone		Porcelain		Silicone	
(kV)	(kV)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
15	110	17.60	441	19.53	496	7.71	196	7.79	198
27	125	22.95	583	28.30	719	8.55	217	9.26	234
38	150	23.87	606	39.52	1003	9.81	249	10.62	270

-

RBD ratings

Maximum voltage (kV)	BIL (kV)	Continuous current (A)	Peak withstand current (kA Asym)
15	110	$600 / 900$	65
27	125	$600 / 900$	65
38	150	$600 / 900$	65

RBD selection guide

Description	Code	Definition
Switch type	R	Type RBD bypass switch
	1	$15 \mathrm{kV}, 110 \mathrm{kV}$ BIL
	2	27 kV, 125 kV BIL
Max kV, BIL	5	38 kV , 150 kV BIL
	N	No stop
Blade stop for parallel disconnect blades	A	90° stop
	N	No stop (not available on crossarm mounting)
	A	90° stop (required on crossarm mounting)
Blade stop for bypass disconnect blade	B	160° stop (not available on crossarm mounting)
	P	Porcelain
Insulators	J	Silicone
	C	NEMA 2-hole with two-piece clamshell \#2-500MCM
	N	NEMA 2-hole pad - standard
Terminal connectors	H	NEMA 2-hole with two-piece clamshell 4/0-500MCM
	N	No back bracket
	8	Four 8" long, .375-16 carriage bolts with two back brackets and hardware
	1	Four 10" long, .375-16 carriage bolts with two back brackets and hardware
	P	Pole mount frame 30° from horizontal
	Q	Same as "P", but accommodates 3/4" hardware
	Y	Galvanized 8' steel crossarm combo (3 RBDs on crossarm)
	F	Galvanized 10' steel crossarm combo (3 RBDs on crossarm)
	Z	Non-metal 8' crossarm combo (3 RBDs on crossarm)
Mounting brackets	T	Non-metal 10' crossarm combo (3 RBDs on crossarm)
	L	Left-hand operation of bypass blade (operates to the left)
Bypass blade	R	Right-hand operation of bypass blade (operates to the right)
	6	600 amperes
Continuous current	9	900 amperes
Specials	0	None

Example: R1NAPNPL60 = RBD, $15 \mathrm{kV}, 110 \mathrm{kV}$ BIL, no stops on parallel blades, 90° stop on bypass blade, porcelain insula-
tors, 2 -hole NEMA pads, polemount frame, left hand operation of bypass blade, 600 A, no specials

RBD mounting configurations

-
Vertical or underhung

-
Polemount

SID disconnect switch

Product features

- Light weight alternative to double insulator disconnect switch
- Reduces the need of double crossarm for mounting when using cutout bracket
- Insulators available in silicone, porcelain, and polymer concrete
- Self aligning silver-to-silver contacts to help ensure long life
- Entire blade is silver-plated copper
- Loadbreak hooks made of galvanized steel for corrosion protection, to be used with loadbreak tool
- Standard two-hole NEMA plated pad or optional terminal connectors
- All testing is in accordance with IEEE 37.34 (consolidated into IEEE 37.30.1)

Description

The SID disconnect switch is a single insulator disconnect with a double-bar switch blade and two, 2-hole extended NEMA pad terminals. It is a lightweight, flexible alternative to the commonly used double insulator design, while still being rated for 600 or 900 A. In addition, the SID disconnect incorporates the ABB quality approach to cutout design.

Application

The SID is used as a disconnect on overhead distribution feeders and in outdoor distribution substations. It is used to provide a visible break point for maintenance personnel, as a sectionalizing point, or as a loadbreak switch when used in conjunction with a portable loadbreak tool.

Mounting

The SID can be mounted like a standard cutout, directly on a pole for use as a disconnect between overhead and underground lines, or as a visible disconnect for maintenance of line equipment. This standard cutout type design allows for ease of installation with a clear indication of its position. The SID can be mounted in the following scenarios:

- Single or double crossarm underhung
- Crossarm similar to a cutout
- Crossarm vertically
- Riser pole application
- Pole mount extended angle

SID unit dimensions

Type	Voltage rating (kV)	BIL (kV)	A		B		Creep		Strike	
			(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
Porcelain	15	110	24.6	625	13.5	342	9.1	231	6.75	170
Silicone	15	110	24.6	625	13.5	342	15.0	380	5.25	133
Polymer concrete	15	110	24.6	625	13.5	342	9.1	231	7.00	178
Porcelain	27	125	28.0	711	16.9	429	12.8	325	8.50	216
Silicone	27	125 or 150	28.0	711	16.9	429	18.9	480	7.50	190
Polymer concrete	27	125	28.0	711	16.9	429	12.8	325	8.50	216
Porcelain	27 or 38	150	28.0	711	16.9	429	17.0	432	10.75	273

Voltage class BIL	Continuous current (A)	Porcelain		Polymer concrete		Silicone	
(kV) (kV)		(lbs)	(kg)	(lbs)	(kg)	(lbs)	(kg)
15.5110	600	14.7	6.7	14.1	6.4	10.9	4.9
15.5110	900	15.6	7.1	15.0	6.8	12.0	5.4
$27 \quad 125$	600	18.4	8.3	17.6	8.0	13.1	5.9
$27 \quad 125$	900	19.3	8.8	18.5	8.4	14.0	6.4
38 150	600	25.2	11.4	-	-	-	-
$38 \quad 150$	900	26.1	11.8	-	-	-	-

SID ratings

Maximum voltage (kV)	BIL (kV)	Continuous current (A)	Peak withstand current (kA Asym)
$\mathbf{1 5 . 5}$	110	600	65
27	125	600	65
38	150	600	65
15.5	110	900	65
27	125	900	65
38	150	900	65

SID selection guide

Description	Code	Definition
Switch type	D	Type SID Switch
	1	$15 \mathrm{kV}, 110 \mathrm{kV}$ BIL
	2	27 kV, 125 kV BIL
	4	$27 \mathrm{kV}, 150 \mathrm{kV}$ BIL
	5	$38 \mathrm{kV}, 150 \mathrm{kV}$ BIL
	7	$38 \mathrm{kV}, 170 \mathrm{kV} \mathrm{BIL}$ (26" creep, porcelain only)
Max kV, BIL	9	$38 \mathrm{kV}, 170 \mathrm{kV} \mathrm{BIL}$ (30" creep, porcelain only)
	N	No stop
	R	90° stop
Blade stop	B	160° stop
	A	NEMA 2-hole with captured 0.5" hardware (galvanized)
	C	NEMA 2-hole with two-piece clamshell \#2-500MCM
	D	NEMA 2-hole with double eyebolt terminal \#2-350MCM
	H	NEMA 2-hole with two-piece clamshell 4/0-500MCM
Terminal connectors	T	NEMA 2-hole pad - standard
	B	NEMA B bracket only
	E	Extended bracket
	U	U pole mounting bracket
	A	NEMA B, angled extended, strap and hardware
	K	Extended bracket with 6" bolts
Brackets	N	No bracket
Hooks	L	Galvanized steel hooks
	6	600 amperes
Continuous current	9	900 amperes
Unused	0	Space holder for future options
Unused	0	Space holder for future options
	A	Porcelain
	J	Silicone
Insulator	z	Polymer concrete

Example: D1RHNL600A $=$ SID, $15 \mathrm{kV}, 110 \mathrm{kV}$ BIL, 90° stop, NEMA 2-hole pads with clamshell 4/0-500MCM, no bracket, galvanized hooks, 600 A , no special options

-
 SID mounting configurations

-
Crossarm, extended angle

-
Pole mount extended angle

-
Standard pole mount

Underhung

LSID disconnect switch

Product features

- Light weight alternative to double insulator disconnect switch
- Reduces the need of double crossarm for mounting when using cutout bracket
- Insulators available in silicone, porcelain, and polymer concrete
- Self aligning silver-to-silver contacts to help ensure long life
- Entire blade is silver-plated copper
- Loadbreak interruption is accomplished by a self-contained loadbreak arc chute which confines the arc and provides a deionizing action
- Standard two-pole NEMA plated pad or optional terminal connectors
- All testing is in accordance with IEEE 37.34 (consolidated into IEEE 37.30.1)

Description

The LSID disconnect switch is a single insulator disconnect with self-contained loadbreak capabilities, a double-blade door, and two 2-hole extended NEMA pad terminals. The LSID is a lightweight, flexible alternative to the commonly used double insulator design, while still being rated to 600 or 900 A . In addition, the LSID disconnect incorporates the ABB quality approach to cutout design.

Application

The LSID is used as a disconnect on overhead distribution feeders and in outdoor distribution substations. It is also used to provide a visible break point for maintenance personnel. The selfcontained loadbreak capability enables the utility to interrupt load current by operating the switch with a simple hookstick.

Mounting

The LSID can be mounted like a standard cutout, directly on a pole for use as a disconnect between overhead and underground lines, or as a visible disconnect for maintenance of line equipment. This standard cutout design provides a clear indication of its position and allows for easy installation. An optional mounting kit is available that allows for a variety of mounting scenarios:

- Single or double crossarm underhung
- Crossarm similar to a cutout
- Crossarm vertically
- Riser pole application

LSID unit dimensions

Type	Voltage rating(kV)	A		B		Creep			Strike	
		BIL (kV)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
Porcelain	15	110	24.6	625	13.5	342	9.1	231	6.75	170
Silicone	15	110	24.6	625	13.5	342	15.0	380	5.25	133
Polymer concrete	15	110	24.6	625	13.5	342	9.1	231	7.00	178
Porcelain	15/27	125	28.0	711	16.9	429	12.8	325	8.50	216
Silicone	15/27	125 or 150	28.0	711	16.9	429	18.9	480	7.50	190
Polymer concrete	15/27	125	28.0	711	16.9	429	12.8	325	8.50	216
Porcelain	15/27	150	28.0	711	16.9	429	17.0	432	10.75	273

| Voltage
 class (kV) | BIL
 (kV) | Continuous
 current (A) | Porcelain | | Polymer concrete | | Silicone | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathbf{n n n n y y y y y y y}$ | (lbs) | (kg) | (lbs) | (kg) | (lbs) | (kg) | | |
| 15 | 110 | 600 | 16.7 | 7.6 | 15.8 | 7.2 | 12.8 | 5.8 |
| $15 / 27$ | 125 | 600 | 20.4 | 9.3 | 19.6 | 8.9 | 15.1 | 6.8 |
| $15 / 27$ | 150 | 600 | 27.2 | 12.3 | - | - | 21.9 | 9.9 |
| 15 | 110 | 900 | 17.6 | 8.0 | 16.7 | 7.6 | 13.7 | 6.2 |
| $15 / 27$ | 125 | 900 | 21.3 | 9.7 | 20.5 | 9.3 | 16.0 | 7.3 |
| $15 / 27$ | 150 | 900 | 28.1 | 12.7 | - | - | 22.8 | 10.3 |

-

LSID ratings

Maximum voltage (kV)	BIL (kV)	Continuous current (A)	Loadbreak current (A)	Peak withstand current (kA Asym)
15	110	600	600	65
$15 / 27$	125	600	600	65
$15 / 27$	150	600	600	65
15	110	900	600	65
$15 / 27$	125	900	600	65
$15 / 27$	150	900	600	65

LSID selection guide

Description	Code	Definition
Switch type	B	Type LSID loadbreak switch
	1	15 kV, 110 kV BIL
	2	15/27 kV, 125 kV BIL
	4	$15 / 27 \mathrm{kV}, 150 \mathrm{kV} \mathrm{BIL}$
Max kV, BIL	7	15/27 kV, 170 kV BIL (26" creep, porcelain only)
	N	No stop
	R	90° stop
Blade stop	B	160° stop
	A	NEMA 2-hole with captured 0.5" hardware (galvanized)
	C	NEMA 2-hole with two-piece clamshell \#2-500MCM
	D	NEMA 2-hole with double eyebolt terminal \#2-350MCM
	H	NEMA 2-hole with two-piece clamshell 4/0-500MCM
Terminal connectors	T	NEMA 2-hole pad - standard
	B	NEMA B bracket only
	E	Extended bracket
	U	U pole mounting bracket
	A	NEMA B, angled extended, strap and hardware
Brackets	N	No bracket
Unused	N	Space holder for future options
	6	600 ampere continuous/600 amperes MAX Ioadbreak
Continuous current/loadbreak	9	900 ampere continuous/600 amperes MAX loadbreak
Unused	0	Space holder for future options
Unused	0	Space holder for future options
	A	Porcelain
	J	Silicone
Insulators	Z	Polymer concrete

Example: B2NCBN600J = LSID, $27 \mathrm{kV}, 125 \mathrm{kV}$ BIL, no stop, NEMA 2-hole pads with clamshell 2-500MCM, NEMA B bracket, 600 A , silicone insulator
-

LSID mounting configurations

Extended angle

Standard pole mount

Underhung

ITD inline tension disconnect switch

Product features

- Lightweight silicone insulator provides extra leakage distance and BIL ratings to help ensure inline switches are not the flashover point
- Self aligning silver-to-silver contacts to help ensure long life
- Entire blade is silver-plated copper
- Loadbreak hooks made of galvanized steel for corrosion protection, to be used with loadbreak tool
- Standard two-pole NEMA plated pad or optional terminal connectors
- All testing is in accordance with IEEE 37.34 (consolidated into IEEE 37.30.1)

Description

The ITD inline tension disconnect is a hookstick-operated switch used to manually switch de-energized or parallel circuits of overhead distribution lines rated 15 through 38 kV , 150 and 200 kV BIL. The ITD is installed directly in the line and is used to sectionalize the circuit. Switches are selected by continuous current and voltage ratings. The ITD is rated for 600 and 900 A continuous current and 65 kA peak withstand current (40 kA momentary).

Operation

All ITD disconnect switches include loadbreak hooks. Use the appropriate loadbreak device to open the switch under load. The pull-ring can be utilized for easy opening and ice breaking. The hook portion of the contact-casting matches the blade latch for positive closure.

Blade operation

A blade stop limits the blade range of motion to either 90° or 160° positions, and a latch prevents the switch from opening under high momentary current.

-
 ITD unit dimensions

Voltage class (kV)	$\begin{aligned} & \text { BIL } \\ & (k V) \end{aligned}$	A		B		C		D		Silicone weight	
		(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(Ib)	(kg)
15 \& 27	150	17.92	455	12.90	328	15.08	383	28.59	726	11.1	5.1
27 \& 38	200	21.38	543	17.52	445	19.67	500	33.21	843	11.4	5.2

ITD insulator details				ITD ratings			
		Creep		Maximum		Continuous	Peak withstand
Voltage class (kV)	BIL (kV)	(in)	(mm)	voltage (kV)	BIL (kV)	current (A)	current (kA Asym)
15 \& 27	150	23.23	590	15 \& 27	150	600/900	65
27 \& 38	200	39.00	991	$\underline{27}$ \& 38	200	600/900	65

ITD selection guide

Description	Code	Definition
Switch type	T	Type ITD switch
	3	$38 \mathrm{kV}, 200 \mathrm{kV} \mathrm{BIL}$
Max kV, BIL	5	27 kV , 150 kV BIL
	N	No stop
	A	90° stop
Blade stop	B	160° stop
	A	NEMA 2-hole with captured 0.5" hardware (galvanized)
	C	NEMA 2-hole with two-piece clamshell \#2-500MCM
	D	NEMA 2-hole with double eyebolt terminal (\#2-350 MCM)
	N	NEMA 2-hole pad - standard
Terminal connectors	H	NEMA 2-hole with two-piece clamshell 4/0-500MCM
	A	Tongue/tongue (TT), silicone
	B	Clevis/clevis (CC), silicone
	M	Tongue/clevis (TC), tongue at hinge end of switch, silicone
Insulator	N	Tongue/clevis (TC), clevis at hinge end of switch, silicone
Unused	N	Space holder for future options
	6	600 amperes
Continuous current	9	900 amperes
Specials	0	None
Unused	0	Space holder for future options
Unused	0	Space holder for future options

[^0]
Additional information

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB Inc. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of ts contents - in whole or in parts - is forbidden without prior written consent of $A B B$ Inc.

ABB Inc.
3022 NC 43 North
Pinetops, NC 27864
Phone: +1 252 827-3212
Fax: +1 252 827-4286
www.abb.com/mediumvoltage

[^0]: Example: T5NCNN9000 = ITD, $27 \mathrm{kV}, 150 \mathrm{kV}$ BIL, no stop, two-piece clamshell \#2-500MCM, tongue/clevis silicone insulator, 900 A , no specials

