Grid feeding monitoring for generating plants connected to distribution systems

CM-UFD.M33

The CM-UFD.M33 with Modbus RTU is a multifunctional grid feeding monitoring relay. It provides different monitoring functions to detect over- and undervoltage (10 -minutes average value, voltage increase and decrease protection) as well as any changes in grid frequency (frequency increase and decrease protection).

The device is connected between the distributed generation and the public grid in order to disconnect the distributed generation in case of problems (e.g. unstable grid), faults or maintenance on the grid. Additionaly, monitoring of ROCOF (rate of change of frequency) and vector shift can be configured.

Characteristics

- Monitoring of voltage and frequency in single- and three-phase mains (2-wire, 3-wire or 4-wire AC systems)
- Pre-settings in accordance with G98/1 and G99/1
- Integrated management of redundancy function
- Multiline, backlit LCD display
- True RMS measuring principle
- Over- and undervoltage, 10 -minutes average value as well as over- and underfrequency monitoring
- Two-level threshold settings for over-/undervoltage and over-/underfrequency
- ROCOF (rate of change of frequency) monitoring and vector shift configurable
- Interrupted neutral detection
- All threshold values and tripping delays adjustable
- Error memory for up to 99 entries (incl. cause of error, measured value, relative timestamp)
- Test function
- Password setting protection
- 3 control inputs, e.g. for feedback signal, remote trip
- $3 \mathrm{c} / \mathrm{o}$ (SPDT) contacts
- Various certifications and approvals
(see overview, document no. 2CDC112249D0201)

Ordering details

Type

Functions

Operating controls

Application

The CM-UFD.M33 is a grid feeding monitoring relay, which is connected between the public grid and the distributed generation such as photovoltaic systems, wind turbines, block-type thermal power stations. It monitors the voltage and the frequency in the grid and disconnects the distributed generation whenever the measured values are not within the range of the adjusted thresholds. The fault is indicated by LED and the corresponding plain text message is shown on the display. The CM-UFD.M33 relay can be used in all low voltage plants and in medium voltage plants.

Operating mode

The CM-UFD.M33 can be set up to monitor single- and three-phase mains (2-wire, 3 -wire as well as 4 -wire AC systems). The unit is configurable by front-face push-buttons. A display with the corresponding menu enables the selection of presettings as well as the precise adjustment of the different threshold values and corresponding time delays. Furthermore, the display visualizes the measured values clearly. Together with the front-face LEDs, it shows all information about operational states of output relays and control inputs.

The CM-UFD.M33 provides 3 output relays and 3 control inputs. Output relays R1 ($11_{15}-12_{16} / 14_{18}$) and R2 ($21_{25}-22_{26} / 24_{28}$) are required for disconnection of a distributed generation from the public grid. The corresponding feedback signals from the external contacts are monitored via the control inputs $\mathrm{Y} 1-\mathrm{YO}$ and $\mathrm{Y} 2-\mathrm{YO}$.

The third output relay R3 $\left(31_{35}-32_{36} / 34_{38}\right)$ can be used for signalization of an event in the grid or a bus fault or the closing command of a motor drive for circuit breaker. Additionally, it can be configured to act synchronously with R1/R2 or controlled via bus.

The control inputs $\mathrm{Y} 1-\mathrm{YO}$ and $\mathrm{Y} 2-\mathrm{YO}$ monitor the corresponding feedback signals from the first and the second switching device. The third control input $\mathrm{Y} 3-\mathrm{YO}$ allows to trip the grid feeding monitoring relay (remote trip), to suppress Y 1 , to suppress Y2, to suppress Y1/Y2 or to suppress the vector shift detection.

Protective functions

If control supply voltage is applied, all phases are present and the switch-on conditions for voltages and frequency are fulfilled, output relays R1 and R2 energize synchronously after the adjusted switch-on delay. The green LED U/T flashes while timing and turns steady when the switch-on delay is complete.

If a measured value exceeds or falls below the set threshold value (overvoltage, undervoltage, overfrequency or underfrequency), R1 and R2 de-energize after the adjusted tripping delay. As soon as the measured value returns to the tolerance range - taking into account an adjustable hysteresis - and all further switch-on conditions are fulfilled, R1 and R2 re-energize. The fault is indicated by the red LED F and the type of fault is shown on the display as a plain text message. The event that has caused tripping of the relay is recorded in the event list. The green LED U/T flashes while timing and turns steady when the delay is complete.

Output relay R3 ($31_{35}-32_{36} / 34_{38}$)

The output relay R3 can be used for:

- Trip signalization

R3 reacts synchronously with R1/R2. ON-time of R3 is inactive.

- Closing command of a breaker motor In case output relays R1 and R2 energize, the adjusted ON-delay starts. When timing is complete, output relay R3 will be activated for the duration of the ON-time or until relay R1 and R2 de-energize.
- Bus fault signalization

In case of no bus communication during the adjusted bus timeout, the bus fault is signalized by R3 (e.g. no sign of life from the bus master)

- Additionally the control of R3 via bus or a deactivation is possible. With these configurations the settings for the ON-delay and the ON-time have no influence on the operating function.

Operating principle / Monitoring functions

${ }^{2)}$ Active when one of the phase-neutral measuring principles is selected in the menu "Nominal voltage"

The device utilizes several separately adjustable monitoring functions for:

- Over voltage protection: > $\mathrm{U}_{\mathrm{Av}},>\mathrm{U} 1,>\mathrm{U} 2$
- Under voltage protection: < U1, < U2
- Over frequency protection: > F1, > F2
- Under frequency protection: < F1, < F2

Protective function U_{AV} (10 -minutes average value):
The CM-UFD.M33 calculates the sliding average value of the 3 phases over a period of 10 minutes. The voltage values are updated every 3 seconds. If the 10-minutes average value exceeds the threshold value, the output relays trip.

Control inputs Y1-Y0, Y2-Y0

Both control inputs $\mathrm{Y} 1-\mathrm{YO}$ and $\mathrm{Y} 2-\mathrm{Y} 0$ are used as feedback contacts for the 2 switching devices of the section switch. The current status of the switching devices is monitored by the grid feeding monitoring relay. The function of these control inputs can be configured as "disabled", "enabled" or "tripping only" The working principle of the control inputs can be configured as "normally closed", "normally open" or "auto detection". Please note that "normally" here refers to "good status" of the grid, when all the monitored voltages and the frequency stay within the set threshold values and output relays R1 and R2 are energized. A failure in the feedback loop has to be removed manually on the device

The grid feeding standards vary from country to country. Some require that a section switch consists of 2 independent switching devices, while others require only 1 switching device working as section switch. In addition, not all standards require monitoring of the switching devices by the feedback monitoring. Therefore the monitoring functions of control inputs $\mathrm{Y} 1-\mathrm{YO}$ and $\mathrm{Y} 2-\mathrm{YO}$ are disabled by default. They can be manually enabled in the menu.

Control input Y3-Y0

The function of control input Y3-Y0 can be configured as "remote trip", "suppress Y1", "suppress Y2", "suppress Y1/Y2", "suppress vector shift detection" or completely "disabled". Working principle of the control input can be configured as "normally open" or "normally closed".

Remote trip: With Y3-Y0 configured as "normally closed", output relays R1 and R2 de-energize if Y3-Y0 is opened, and vice versa

Suppress Y1, suppress Y2, suppress Y1/Y2: These functions can be used to suppress evaluation of the chosen feedback loop during synchronization of a generator, so that the status of the feedback signal will not be considered as a feedback error. An alternative solution is to set the release window of the corresponding feedback loop larger than the possible duration of synchronization process.

Remote trip

The Modbus RTU and the control input Y3-YO allow remote tripping of the grid feeding monitoring relay. The remote trip input can be configured as normally open or normally closed. If normally closed is configured, the relay trips if Y3-Y0 is opened. If normally open is configured, the relay trips if Y3-Y0 is closed. The output relay R1 is tripped by the remote trip within less than 20 ms . When the remote trip input is deactivated, the output relay R1 energizes again.

ROCOF (Rate of change of frequency $d f / d t$)

This function monitors the rate of change of frequency within a very short time and detects an imminent loss of mains (islanding). The ROCOF function detects zero crossings of the grid voltages. It measures the time between the zero crossings and calculates a new frequency after each zero crossing. In case the frequency changes too much since the last zero crossing, the output relay R1 trips. After the adjusted error time the relay de-energizes automatically.

The ROCOF monitoring function is deactivated per default and must be activated in the menu.

Vector shift detection

This function is another possibility of detecting a loss of mains (islanding).
The vector shift detection is disabled by default and can be manually enabled in the menu. Through zero crossings the device detects the vector shift of mains voltage and de-energizes output relays R1 immediately if the shift exceeds the adjusted threshold value, e.g. 12°. Only after the set error time the switch-on conditions will be evaluated in order to start an auto reconnection

Switch-on conditions

In order to switch on the section switch after having applied control supply voltage or after a fault, the voltages as well as the frequency must stay within the set switch-on conditions during the switch-on delay. This window of voltage and frequency can be further restricted in the menu "Switch-on conditions". If one parameter leaves the window, the switch-on process is interrupted. When all parameters fulfill the switch-on conditions again, the switch-on delay restarts. When the switch-on time is complete, relays R1 and R2 re-energize automatically. If the function "Short interruption" is enabled in the menu "Switch-on conditions" -> "Switch-on delay", the switch-on delay will be reduced to 5 s in case of a short interruption of <3 s.

Interrupted neutral detection

Interrupted neutral detection is always active when a phase-neutral measuring principle is selected in the menu "Nominal voltage". The interruption of the neutral conductor will result in an immediate tripping of output relays R1 and R2.

Automatic reconnecting attempts

If an error occurs at feedback loop Y1-Y0 or Y2-Y0 (e.g. undervoltage release because of a lightning strike), $0 . . .3$ automatic reconnecting attempts will be carried out, taking into account the switch-on conditions. Therefore a temporary feedback error doesn't have to be handled manually. The corresponding error in the feedback loop is stored in the error list.

Error memory

The CM-UFD.M33 records and logs the last 99 events that caused tripping of the grid feeding monitoring relay as well as any interruption of the control supply voltage. The type of error as well as the current value of the operation counter is recorded into the internal error list, accessible via the menu. The list is stored internally in a non-volatile memory which can be reset by the user.

Test function

The test function can be used to simulate an error in the installation. This way, the time delays of the feedback loops can be determined. A feedback loop includes the output relay, the corresponding switching device and the feedback contact. The test function can be started by pressing the ESC button for 3 seconds. The output relays R1 and R2 de-energize immediately and the CM-UFD.M33 gets feedback signals from the section switch through control inputs Y1-Y0 and Y2-Y0 respectively. The time intervals from de-energizing both output relays to receiving both feedback signals is shown on the display. Return to the menu is realized by confirming with the OK button.

Electrical connection

A1-A2
Y1-Y0

Y2-YO

Y3-Y0
L1, L2, L3, N
$11_{15}-12_{16} / 14_{18}$
$21_{25}-22_{26} / 24_{28}$
$31_{35}-32_{36} / 34_{38}$

Control supply voltage
Control input 1, for feedback from switching device 1
Control input 2, for feedback from switching device 2
Control input 3, configurable
Measuring input
Relay R1, c/o (SPDT) contact
Relay R2, c/o (SPDT) contact
Relay R3, c/o (SPDT) contact

Configuration

The menu structure starts with the main page that shows the real time measured values. Use the arrow keys to switch between the real time voltages and the 10-minutes average voltages

Display menu structure, navigation and possible configurations

Main page

L1N: 230. 0 U
L2N: 230. 2U
L3N: 229. 7 V
49.99 Hz

R1 R2 R3 W1 W2 WS

AUL1N: 230. 0.
AUL2N: 230. 2 U
AUL3N: 229.7V
49.99 Hz

R1 R2 R3 Y1 W2 W8

Changes of parameters can be cancelled by pressing the ESC button.

Pre-settings

The CM-UFD.M33 is delivered with 3 sets of pre-settings according to EREC (Engineering Recommendation) G98/1 and G99/1 low voltage protection and G99/1 high voltage protection, which can be loaded in the submenu "General settings" -> "Load settings".

- Pre-setting 1 (default): G99/1 LV - applies to Generating Unit(s) which are not compliant with EREC G98 requirements.
- Pre-setting 2: G99/1 HV - If the EREC G99 protection takes its voltage reference from an HV source
- Pre-setting 3: G98/1 - applies to Fully Type Tested Micro-generators (up to and including 16 A per phase) in parallel with public Low Voltage Distribution Networks

Additionally, 5 sets of self-defined pre-settings can be saved in the memory and loaded by the user.

Global delay settings

The "Tripping delay offset" within the submenu "Global delay settings" reduces the tripping delay of every single monitoring function in order to extend the operating time of the circuit breaker.

Password protection

Every CM-UFD.M33 relay is delivered with the same default password [0000] for protection of its settings and local command. The installer is responsible for the verification of the parameter values and the change of the password with a personal one in order to avoid unwanted modifications.

Visualization of the parameters is always possible, modification only after having entered the password. While entering the password, the password protection is temporarily disabled until the menu is exited.

Only the parameters 'autotest', 'language', 'display switch-off delay' and 'contrast' are not password protected.

Menu structure

Main menu

Nominal voltage
W/O setuF
Monitoring func.
Autotest
General settings

| V down $u p ~$ |
| :--- | :--- |

Submenu

Menu			Configuration possibilities	Step size	G99		G98 G98
					G99 LV (Default)	G99 HV	
Nominal voltage	Measuring principle		[3L-N + 3L-L], [3L-N], [3L-L], [1L-N]		3L-N	3L-L	3L-N
	Nominal voltage		[57.7]-[240.0] V L-N / [99.9]-[415.7] V L-L	0.1 V	230 V L-N	110 V L-L	230 V L-N
I/O setup	Relay R3	Working principle	[disabled], [open-circuit], [closedcircuit], [sync. with R1/R2]		disabled	disabled	disabled
		ON-delay	[0.00]-[10.00] s	0.01 s	0 s	0 s	0 s
		ON-time	[0.05]-[10.00] s	0.01 s	0.5 s	0.5 s	0.5 s
	Feedback Y1	Monitoring	[disabled], [enabled], [tripping only]		disabled	disabled	disabled
		Working principle	[normally closed], [normally open], [auto detection]		auto detection	auto detection	auto detection
		Trip window	[0.05]-[0.50] s	0.01 s	0.1 s	0.1 s	0.1 s
		Release window	[0.5]-[6000.0] s	0.1 s	0.5 s	0.5 s	0.5 s
	Feedback Y2	Monitoring	[disabled], [enabled], [tripping only]		disabled	disabled	disabled
		Working principle	[normally closed], [normally open], [auto detection]		auto detection	auto detection	auto detection
		Trip window	[0.05]-[0.50] s	0.01 s	0.1 s	0.1 s	0.1 s
		Release window	[0.5]-[6000.0] s	0.1 s	0.5 s	0.5 s	0.5 s
	Control Input Y3	Function	[disabled], [remote trip], [suppress Y1], [suppress Y2], [suppress Y1/Y2], [suppress VS]		disabled	disabled	disabled
		Working principle	[normally closed], [normally open]		normally open	normally open	normally open
	Auto reconnection	Number of attempts	[0]-[3]	1	0	0	0

Menu			Configuration possibilities	Stepsize	G99		G98 G98
					$\begin{aligned} & \text { G99 LV } \\ & \text { (Default) } \end{aligned}$	G99 HV	
Monitoring functions	(U>) Overvoltage >UAV	Monitoring	[disabled], [enabled]		disabled	disabled	disabled
		Threshold value	[0.100]-[1.300] xU_{n}	$\begin{aligned} & 0.005 \\ & \mathrm{xU}_{\mathrm{n}} \end{aligned}$	$1.1 \times \mathrm{U}_{\mathrm{n}}$	$1.1 \times \mathrm{U}_{\mathrm{n}}$	$1.1 \times \mathrm{U}_{\mathrm{n}}$
		Hysteresis	[0.1]-[10.0] \%	0.1 \%	0.1 \%	0.1 \%	0.1 \%
	$\begin{aligned} & \text { (U>>) } \\ & \text { Overvoltage >U1 } \end{aligned}$	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[0.100]-[1.300] x U_{n}	$\begin{aligned} & 0.005 \\ & x U_{n} \end{aligned}$	$1.14 \mathrm{XU}_{\mathrm{n}}$	$1.1 \times \mathrm{U}_{\mathrm{n}}$	$1.14 \mathrm{xU}_{\mathrm{n}}$
		Hysteresis	[0.5]-[10.0] \%	0.1 \%	1 \%	1 \%	1 \%
		Tripping delay	[0.00]-[600.00] s	1.0 s	1.0 s	1.0 s	1.0 s
	Overvoltage > U2	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[0.100]-[1.300] xU_{n}	$\begin{aligned} & 0.005 \\ & \mathrm{xU} U_{\mathrm{n}} \end{aligned}$	$1.19 \mathrm{XU}_{\mathrm{n}}$	1.13 xUn	1.19 xU n
		Hysteresis	[0.5]-[10.0] \%	0.1 \%	1 \%	1 \%	1 \%
		Tripping delay	[0.00]-[600.00] s	0.01 s	0.5 s	0.5 s	0.5 s
	Undervoltage <U1	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[0.100]-[1.300] xU ${ }_{\text {n }}$	$\begin{aligned} & 0,005 \\ & \mathrm{xU}_{\mathrm{n}} \end{aligned}$	$0.8 \times U_{n}$	$0.8 \times \mathrm{U}_{\mathrm{n}}$	$0.8 \times U_{n}$
		Hysteresis	[0.5]-[10.0] \%	0.1\%	1 \%	1\%	1\%
		Tripping delay	[0.00]-[600.00] s	0.01 s	2.5 s	2.5 s	2.5 s
	Undervoltage <U2	Monitoring	[disabled], [enabled]		disabled	disabled	disabled
		Threshold value	[0.100]-[1.300] x U_{n}	$\begin{aligned} & 0,005 \\ & \mathrm{xU}_{\mathrm{n}} \end{aligned}$	0.45 xU	0.45 xUn	$0.45 \times \mathrm{U}_{\mathrm{n}}$
		Hysteresis	[0.5]-[10.0] \%	0.1\%	1\%	1\%	1\%
		Tripping delay	[0.00]-[600.00] s	0.01 s	0.1 s	0.1 s	0.1 s
Monitoring functions	Overfrequency $>F 1$	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[45.00]-[65.00] Hz	0.01 Hz	52.0 Hz	52.0 Hz	52.0 Hz
		Hysteresis	[0.05]-[4.00] Hz	0.01 Hz	0.1 Hz	0.1 Hz	0.1 Hz
		Tripping delay	[0.00]-[600.00] s	0.01 s	0.5 s	0.5 s	0.5 s
	$\begin{aligned} & \text { Overfrequency } \\ & \text { >F2 } \end{aligned}$	Monitoring	[disabled], [enabled]		disabled	disabled	disabled
		Threshold value	[45.00]-[65.00] Hz	0.01 Hz	51.5 Hz	51.5 Hz	51.5 Hz
		Hysteresis	[0.05]-[4.00] Hz	0.01 Hz	0.1 Hz	0.1 Hz	0.1 Hz
		Tripping delay	[0.00]-[600.00] s	0.01 s	0.1 s	0.1 s	0.1 s
	Underfrequency <F1	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[45.00]-[65.00] Hz	0.01 Hz	47.5 Hz	47.5 Hz	47.5 Hz
		Hysteresis	[0.05]-[4.00] Hz	0.01 Hz	0.1 Hz	0.1 Hz	0.1 Hz
		Tripping delay	[0.00]-[600.00] s	0.01 s	20.0 s	20.0 s	20.0 s
	Underfrequency <F2	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[45.00]-[65.00] Hz	0.01 Hz	47.0 Hz	47.0 Hz	47.0 Hz
		Hysteresis	[0.05]-[4.00] Hz	0.01 Hz	0.1 Hz	0.1 Hz	0.1 Hz
		Tripping delay	[0.00]-[600.00] s	0.01 s	0.5 s	0.5 s	0.5 s
	ROCOF	Monitoring	[disabled], [enabled]		enabled	enabled	enabled
		Threshold value	[0.100]-[5.000] Hz/s	$\begin{aligned} & 0.005 \\ & \mathrm{~Hz} / \mathrm{s} \end{aligned}$	$1 \mathrm{~Hz} / \mathrm{s}$	$1 \mathrm{~Hz} / \mathrm{s}$	$1 \mathrm{~Hz} / \mathrm{s}$
		Number of cycles	[4]-[50]	1	25	25	25
		Tripping delay	[0.00]-[600.00] s	0.01 s	0.5 s	0.5 s	0.5 s
		Error time	[0.50]-[600.00] s	0.01 s	30 s	30 s	30 s
	Vector Shift VS	Monitoring	[disabled], [enabled]		disabled	disabled	disabled
		Threshold value	[2.0]-[50.0] ${ }^{\text {o }}$	$0.1{ }^{\circ}$	50°	50°	50°
		Error time	[0.50]-[600.00] s	0.01 s	30 s	30 s	30 s
	Global delay setting	Trip. delay offset	[000]-[100] ms	1 ms	0 ms	0 ms	0 ms

Menu			Configuration possibilities	Step size	G99		$\begin{aligned} & \text { G98 } \\ & \text { G98 } \end{aligned}$
					G99 LV (Default)	G99 HV	
Switch-on conditions	Switch-on delay	Switch-on delay	[0.5]-[6000.0] s	0.1 s	20 s	20 s	20 s
		Short interruption	[disabled], [enabled]		disabled	disabled	disabled
	Voltage window	Monitoring	[disabled], [enabled]		disabled	disabled	disabled
		Minimum	[0.100]-[1.000] x U_{n}	$\begin{aligned} & 0,005 \\ & x U_{n} \end{aligned}$	$0.8 \times \mathrm{U}_{\mathrm{n}}$	$0.8 \times U_{\text {n }}$	$0.8 \times \mathrm{U}_{\mathrm{n}}$
		Maximum	[1.000]-[1.300] x U_{n}	$\begin{aligned} & 0.005 \\ & \mathrm{xU} U_{\mathrm{n}} \end{aligned}$	$1.14 \times \mathrm{U}_{\text {n }}$	$1.1 \times \mathrm{U}_{\mathrm{n}}$	$1.14 \times \mathrm{U}_{\text {n }}$
	Frequency window	Monitoring	[disabled], [enabled]		disabled	disabled	disabled
		Minimum	[45.00]-[60.00] Hz	0.01 Hz	47.5	47.5	47.5
		Maximum	[50.00]-[65.00] Hz	0.01 Hz	52.0	52.0	52.0
General settings	Language	Language	[English], [Deutsch]		English *)	English *)	English *)
	Display	Switch-off delay	[10]-[600]s	1 s	10 s *)	10 **)	10 **)
		Contrast	[0]-[9]	1	5*)	5*)	5 *)
	Password	Protection	[disabled], [enabled]		disabled *)	disabled*)	disabled *)
		Change password	[****]		0000*)	0000*)	0000 *)
	Load settings	"Setting name"					
	Save settings	"Setting name"					
	Information						
Error memory	Error list						
	Error recording	Remote trip via Y3	[disabled], [enabled]		enabled *)	enabled *)	$\begin{aligned} & \text { enabled } \\ & \text { *) } \end{aligned}$
		Remote trip via bus	[disabled], [enabled]		enabled *)	enabled *)	$\begin{aligned} & \text { enabled } \\ & *) \end{aligned}$
		Power OFF	[disabled], [enabled]		enabled *)	enabled *)	$\begin{aligned} & \text { enabled } \\ & \text { *) } \end{aligned}$
	Reset error memory						
	Operating counter						
	Cumulated OFF-time						
	Trip counter						

[^0]
Display and failure messages

L1N: 184.4 U
L2N: 184.7 U
L3N: 184.1 V
49.99 Hz
R1 R2 R3
R1 Y2 YB

The voltage at L3 has fallen below the first undervoltage threshold. The voltages at L1 and L2 have fallen below the switch-on conditions, yet not below the undervoltage threshold

Error overvoltage $U_{A V}$ in all three phases detected. If overvoltage occurs in one phase only, $>\mathrm{U}_{\mathrm{AV}}$ indicates the phase with overvoltage.
L2N: 260. 30 >LA
L3N: 260. ดU >UFU
49.99 Hz

R1 R2 R3 Y1 Y2 Y3

L1N: 264.6U >U2 L2N: 264. 9U >U2 L3N: 264. 6U >U2 49.99 Hz

R1 R2 R3 Y1 Y2 Y3
Error overvoltage >U1 in all three phases detected. If overvoltage occurs in one phase only, >U1 indicates the phase with overvoltage.

Error overvoltage $>\mathrm{U} 2$ in all three phases detected If overvoltage occurs in one phase only, >U2 indicates the phase with overvoltage.

L1N: 230. 0 U
L2N: 230. 3U
L3N: 229. 7U
49.61 Hz
FEEdGack Y1
R1 R2 R3 Y1 Y2 Y3

If undervoltage occurs in one phase only, <U1 indicates the phase with undervoltage

R1 R2 R3 Y1 Y2 Y3

L1N: $90.2 U$	LUZ	
L2N:	$90.3 U$	KUZ
L3N:	$90.2 U$	UUZ
49.99 Hz		
R1 R2 R3 Y1 Y2 YZ		

Error undervoltage <U2 in all three phases detected. If undervoltage occurs in one phase only, <U2 indicates the phase with undervoltage

L1N: 229.9 U
L2N: 229.2 U
L3N: 229.1 U
49.99 Hz
Internal error
R1 R2 R3 Y1 Y2 YB


```
L1N: 230, 6 V
L2N: 230, 7U
L3N: 230, 5U \(47,00 \mathrm{~Hz}\)

4-wire connection
The neutral conductor is disconnected or interrupted
Please check wiring.

Error in feedback loop Y1-Y0, e.g. wiring failure or welded feedback contact. Please check wiring.

Error in feedback loop is removed. Press ESC to reset the grid feeding monitoring relay.

Failure within the logic or hardware of the device Remove supply and restart. If failure still occurs, there is a permanent failure in the device.

Remote trip via Y 3
Shows that the remote trip is activated via control input \(Y 3\)
Error, ROCOF
Threshold for rate of change of frequency exceeded.

Error, vector shift

Threshold for vector shift exceeded.
ated via control input Y3

L1N: 230,5U
L2N: 230, 7U
L3N: 230, 3U \(49,00 \mathrm{~Hz}\)

\section*{Error memory}

As soon as one of the above errors occurs, subsequent error codes with the corresponding time stamp will be stored in the error memory:
 and 15 seconds after commissioning
\begin{tabular}{|c|c|c|}
\hline Error code & Explanation & \\
\hline AVL1N> \(\mathrm{U}_{\text {AV }}\) or AVL2N> \(\mathrm{U}_{\text {AV }}\) or AVL3N> \(\mathrm{U}_{\text {AV }}\) & Error, Error, overvoltage \(\mathrm{U}_{\mathrm{AV}}\) & 10-minutes average value \\
\hline AVL12> \(U_{\text {AV }}\) or AVL23> \(U_{\text {AV }}\) or AVL31>U \({ }_{\text {AV }}\) & Error, overvoltage \(\mathrm{U}_{\mathrm{AV}}\) & 10-minutes average value \\
\hline L1N<U1 or L2N<U1 or L3N<U1 & Error, overvoltage U1 & \\
\hline L12>U1 or L23>U1 or L31>U1 & Error, overvoltage U1 & \\
\hline L1N>U2 or L2N>U2 or L3N>U2 & Error, overvoltage U2 & \\
\hline L12>U2 or L23>U2 or L31>U2 & Error, overvoltage U2 & \\
\hline L1N<U1 or L2N<U1 or L3N<U1 & Error, undervoltage U1 & \\
\hline L12<U1 or L23<U1 or L31<U1 & Error, undervoltage U1 & \\
\hline L1N<U2 or L2N<U2 or L3N<U2 & Error, undervoltage U2 & \\
\hline L12<U2 or L23<U2 or L31<U2 & Error, undervoltage U2 & \\
\hline F>F1 & Error, overfrequency F1 & \\
\hline F>F2 & Error, overfrequency F2 & \\
\hline F<F1 & Error, underfrequency F1 & \\
\hline F<F2 & Error, underfrequency F2 & \\
\hline ROCOF & Error, ROCOF & \\
\hline VECTOR & Error, Vector shift & \\
\hline TEST & Error, test function & \\
\hline REMOTE Y3 & Error, remote trip via control input Y3 & \\
\hline FB1 & Error, feedback of switching device 1 & Malfunction of the first switching device \\
\hline FB2 & Error, feedback of switching device 2 & Malfunction of the second switching device \\
\hline POWER & Error, power & Supply voltage is disconnected or too low \\
\hline NEUTRAL & Error, interrupted neutral detection & \\
\hline Exxx (e.g. E123) & Internal error & Failure within the logic or hardware of the device \\
\hline
\end{tabular}

\section*{Connection and wiring}

\section*{Example of single-phase application}


Example of three-phase application


\section*{Legend}
1. Control supply voltage for CM-UFD.M33
2. Public grid
3. Protection fuse for the CM-UFD.M33
4. Protection fuse for the measuring circuit of the CM-UFD.M33 (optional)
5. Short-circuit protection
6. Undervoltage release
7. Control input for feedback function
8. Switching device of the section switch
9. Switching device of the generator and/or inverter
10. Generator and/or inverter
11. Primary switch mode power supply unit CP-E ( \(230 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}\) ) for the buffer module CP-B
12. Ultra-capacitor based buffer module CP-B ( 24 V DC in/out)
13. Wire protection fuse for the output of the buffer module CP-B

\section*{Technical data}

Data at \(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\) and rated values, unless otherwise indicated
—

\section*{Input circuits*}
\begin{tabular}{l|l}
\hline Supply circuit & A1-A2 \\
\hline Rated control supply voltage \(U_{s}\) & \(24-240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}\) \\
\hline Rated control supply voltage \(U_{s}\) tolerance & \(-15 \ldots+10 \%\) \\
\hline Rated frequency & DC or \(50 / 60 \mathrm{~Hz}\) \\
\hline Frequency range AC & \(40-70 \mathrm{~Hz}\) \\
\hline Typical current / power consumption & 24 V DC \\
\hline & \(60 \mathrm{~mA} / 1.4 \mathrm{~W}\) \\
\hline Power failure buffering time & 230 V AC \\
\cline { 2 - 3 } & \(22 \mathrm{~mA} / 5.0 \mathrm{~V} \mathrm{~A}\) \\
\hline & 200 ms, acc. LVFRT (110-240 V AC) \\
\hline & 10 ms, acc. IEC/EN \(60255-26\) (24 V AC/DC) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Measuring circuits & L1, L2, L3, N \\
\hline Nominal voltage of the distribution system \(\mathrm{U}_{\mathrm{n}}\) & 57.7-240.0 V AC / 99.9-415.7 V AC \\
\hline Measuring ranges voltage: line to neutral & 0-317 V AC \\
\hline voltage: line to line & 0-550 V AC \\
\hline frequency & \(40-70 \mathrm{~Hz}\) \\
\hline Accuracy within the temperature range voltage & \(\leq 0,5 \% \pm 0,5 \mathrm{~V}\) \\
\hline frequency & \(\pm 20 \mathrm{mHz}\) \\
\hline delay times & \(\leq 0,1 \% \pm 20 \mathrm{~ms}\) (unless otherwise specified) \\
\hline Monitoring functions overvoltage 10-min average (> \(\mathrm{U}_{\mathrm{AV}}\) ) & \\
\hline overvoltage (> U1) & threshold adjustable, \(0.100-1.300 \times \mathrm{U}_{\mathrm{n}}\) in \(0.005 \times \mathrm{U}_{\mathrm{n}}\) steps \\
\hline overvoltage (> U2) & \\
\hline undervoltage (<U1) & \\
\hline undervoltage (< U2) & threshold adjustable, 0.100-1.300 \(\times U_{n}\) in \(0.005 \times U_{n}\) Steps \\
\hline overfrequency (> F1) & le, \(45.00-65.00 \mathrm{~Hz}\) in 0.01 Hz steps \\
\hline overfrequency (> F2) & , \(45.00-65.00 \mathrm{~Hz}\) in 0.01 Hz steps \\
\hline underfrequency (< F1) & threshold adjustable \(45.00-65.00 \mathrm{~Hz}\) in 0.01 Hz steps \\
\hline underfrequency (< F2) & threshold adjustable, \(45.00-65.00 \mathrm{~Hz}\) in 0.01 Hz steps \\
\hline ROCOF & threshold adjustable, \(0.1-5 \mathrm{~Hz} / \mathrm{s}\) in \(0.005 \mathrm{~Hz} / \mathrm{s}\) steps \\
\hline vector shift & threshold adjustable, \(2.0-40.0^{\circ}\), in \(0.1^{\circ}\) steps \\
\hline Hysteresis related to the threshold values overvoltage 10-min average (> \(\mathrm{U}_{\mathrm{AV}}\) ) & adjustable, 0.1-10.0 \% in 0.1 \% steps \\
\hline overvoltage (> U1, > U2) & in 0.1 \\
\hline undervoltage (< U1, < U2) & e, 0.5-10.0 \% in 0.1 \% step \\
\hline overfrequency (> F1, > F2) & adjustable \(0.05-4.00 \mathrm{~Hz}\) in 0.01 Hz steps \\
\hline underfrequency (< F1, < F2) & adjustable, \(0.05-4.00 \mathrm{~Hz}\) in 0.01 Hz steps \\
\hline Measuring method & true RMS \\
\hline Measuring cycle ROCOF & adjustable between 4 and 50 periods \\
\hline Control circuits & Y0, Y1, Y2, Y3 \\
\hline Number of control inputs & 3 \\
\hline Type of triggering & volt-free triggering, signal source YO \\
\hline Control function Y1-YO control input 1 & feedback switching device 1 \\
\hline Y2-YO control input 2 & feedback switching device 2 \\
\hline Y3-YO control input 3 & remote trip, suppression of \(\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 1 / \mathrm{Y} 2\) or suppression of vector shift detection \\
\hline Electrical isolation from the supply voltage & yes \\
\hline from the measuring circuit & no \\
\hline from the relay outputs & yes \\
\hline Maximum switching current in the control circuit & 6 mA \\
\hline No-load voltage at the control inputs & typ. 24 V DC \\
\hline Minimum control pulse length & 20 ms \\
\hline Maximum cable length at the control inputs & 10 m \\
\hline
\end{tabular}
*Voltage transformers may be used in low voltage applications to transform and adapt the measuring input to ensure the voltage magnitude applied to the input terminals fall within the beforementioned voltage range. This to allow for the effective application of the Under-/Overvoltage and Under-/Overfrequency monitoring functions.

Timing functions
\begin{tabular}{|c|c|c|}
\hline Switch-on delay (prior to first gr & connection after interruption) & adjustable, 1.00-600.00 s in 0.01 s steps \\
\hline ON-delay R3 & & adjustable, \(0.00-10.00 \mathrm{~s}\) in 0.01 s steps \\
\hline ON-time R3 & & adjustable, \(0.05-10.00 \mathrm{~s}\) in 0.01 s steps \\
\hline Trip window, feedback loop & & adjustable, \(0.05-0.50 \mathrm{~s}\) in 0.01 s steps \\
\hline Release window, feedback loop & & adjustable, \(0.5-6000.0 \mathrm{~s}\) in 0.1 s steps \\
\hline Tripping delay & overvoltage & \\
\hline & undervoltage & \\
\hline & overfrequency & adjustable, \(0.06-600.00 \mathrm{~s}\) in 0.01 s steps; + \(0 /-50 \mathrm{~ms}\) \\
\hline & underfrequency & \\
\hline & ROCOF & \\
\hline Error time & ROCOF & ble 0.5-600.00 s in 0.01 s step \\
\hline & vector shift & adjustable, 0.5-600.00 s in 0.01 s steps \\
\hline Reaction time & overvoltage av. & max. 3 s \\
\hline & vector shift & \(<50 \mathrm{~ms}\) \\
\hline & interrupted neutral conductor & < 150 ms \\
\hline
\end{tabular}
-
User interface
\begin{tabular}{lr|l}
\hline Indication of operational states & \\
\hline Control supply voltage applied / timing & U/T & LED green on / flashing \\
\hline Fault message & F & LED red on \\
\hline For details see the message on the display & \\
\hline & & \\
\hline Display & on & press any button \\
\hline Backlight & off & switch-off delay adjustable, \(10-600\) s (default 10 s) \\
\hline Resolution & \(112 \times 64\) pixel \\
\hline Display size & \(36 \times 22 \mathrm{~mm}\) \\
\hline & \\
\hline Operating controls & \\
\hline 4push-buttons for menu navigation, setting and entering & \\
\hline
\end{tabular}
-
Output circuits
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Kind of outputs} & 11-12/14 (15-16/18) & relay R1, c/o (SPDT) contact, tripping relay for switching device 1 \\
\hline & 21-22/24 (25-26/28) & relay R2, c/o (SPDT) contact, tripping relay for switching device 2 \\
\hline & 31-32/34 (35-36/38) & relay R3, c/o (SPDT) contact, configurable \\
\hline \multirow[t]{3}{*}{Operating principle} & 11-12/14 & closed-circuit principle* \\
\hline & 21-22/24 & closed-circuit principle* \\
\hline & 31-32/34 & configurable (disabled, open-circuit, closed-circuit, sync. with R1/2, bus-controlled, bus fault)* \\
\hline \multicolumn{2}{|l|}{Contact material} & AgNi alloy, Cd-free \\
\hline \multicolumn{2}{|l|}{Minimum switching voltage / minimum switching current} & \(24 \mathrm{~V} / 10 \mathrm{~mA}\) \\
\hline \multicolumn{2}{|l|}{Maximum switching voltage / maximum switching current} & see "Load limit curves" \\
\hline \multirow[t]{4}{*}{Rated operational voltage \(U_{e}\) and rated operational current \(I_{e}\)} & AC-12 (resistive) at 230 V & 4A \\
\hline & AC-15 (inductive) at 230 V & 3 A \\
\hline & DC-12 (resistive) at 24 V & 4 A \\
\hline & DC-13 (inductive) at 24 V & 2 A \\
\hline \multirow[t]{4}{*}{AC rating (UL 508)} & utilization category (Control Circuit Rating Code & B 300 \\
\hline & max. rated operational voltage & 300 V \\
\hline & max. continous thermal current at B 300 & 5 A \\
\hline & max. making/breaking apparent power at B 300 & 3600/360 VA \\
\hline \multicolumn{2}{|l|}{Mechanical lifetime} & \(30 \times 10^{6}\) switching cycles \\
\hline Electrical lifetime & at AC-12, \(230 \mathrm{~V} \mathrm{AC}\), & \(0.1 \times 10^{6}\) switching cycles \\
\hline \multirow[t]{2}{*}{Maximum fuse rating to achieve short-circuit protection} & \(\mathrm{n} / \mathrm{c}\) contact & 10 A fast-acting \\
\hline & \(\mathrm{n} / \mathrm{c}\) contact & 10 A fast-acting \\
\hline \multicolumn{2}{|l|}{Conventional thermal current \({ }_{\text {Ith }}\)} & 5 A \\
\hline
\end{tabular}
* Closed-circuit principle: Output relay de-energizes if a fault is occuring

Open-circuit principle: Output relay energizes if a fault is occuring

\section*{-}

General data
\begin{tabular}{l|l}
\hline MTBF & on request \\
\hline Duty cycle & 100 \% \\
\hline Dimensions & net \\
\hline See "Dimensional drawing" \\
\hline Mounting & \\
\hline Mounting position & \begin{tabular}{l} 
DIN rail (IEC/EN 60715) TH 35-7.5 and TH 35-15, \\
snap-on mounting without any tool
\end{tabular} \\
\hline Minimum distance to other units & horizontal / vertical \\
\hline any \\
\hline Degree of protection & housing / terminals
\end{tabular}
—
Electrical connection
\begin{tabular}{lr|l}
\hline Connecting capacity & fine-strand with wire end ferrule & \begin{tabular}{l}
\(1 \times 0.25-4 \mathrm{~mm}^{2}(1 \times 24-12 \mathrm{AWG})\) \\
\(2 \times 0.25-0.75 \mathrm{~mm}^{2}(2 \times 24-18 \mathrm{AWG})\)
\end{tabular} \\
\hline fine-strand without wire end ferrule & \begin{tabular}{l}
\(1 \times 0.2-4 \mathrm{~mm}^{2}(1 \times 24-12 \mathrm{AWG})\) \\
\(2 \times 0.2-1.5 \mathrm{~mm}^{2}(2 \times 24-16\) AWG \()\)
\end{tabular} \\
\hline & rigid & \begin{tabular}{l}
\(1 \times 0.2-6 \mathrm{~mm}^{2}(1 \times 24-10 \mathrm{AWG})\) \\
\(2 \times 0.2-1.5 \mathrm{~mm}^{2}(2 \times 24-16 \mathrm{AWG})\)
\end{tabular} \\
\hline Stripping length & \(8 \mathrm{~mm} \mathrm{(0.31in)}\) \\
\hline Tightening torque & \(0.5-0.6 \mathrm{Nm}(4.4-5.3 \mathrm{lb} . \mathrm{in})\) \\
\hline Recommended screw driver & PH1/ \(\varnothing 4.0 \mathrm{~mm}\) \\
\hline
\end{tabular}
—
Environmental data
\begin{tabular}{lr|r|r}
\hline Ambient temperature ranges & operation & \(-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)\) \\
\cline { 3 - 4 } & storage & \(-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right)\) \\
\hline Damp heat, cyclic & IEC/EN \(60068-2-30\) & \(6 \times 24 \mathrm{~h} \mathrm{cycle}, 55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\) \\
\hline Climatic class & IEC/EN \(60721-3-3\) & \(3 \mathrm{K5}\) (no condensation, no ice formation) \\
\hline Vibration, sinusoidal & & class 2 \\
\hline Shock & & class 2 \\
\hline
\end{tabular}
—
Isolation data
Rated insulation voltage Ui, overvoltage category
\begin{tabular}{|c|c|c|}
\hline basic insulation & measuring (L1/L2/L3/N) & \[
\begin{array}{|l|}
\hline 300 \mathrm{~V}, \text { IV } \\
600 \mathrm{~V}, \mathrm{III}
\end{array}
\] \\
\hline & output 1 / output 2 / output 3 & 300 V , III \\
\hline reinforced/doubled insulation & supply / control inputs / outputs & 300 V , III \\
\hline & measuring (L1/L2/L3/N) / (supply / outputs) & 300 V, IV \\
\hline Rated impulse withstand voltage \(\mathrm{U}_{\text {imp }}\) & output 1 / output 2 / output 3 & \(4 \mathrm{kV} ; 1.2 / 50 \mu \mathrm{~s}\) \\
\hline & supply / control inputs / outputs & 6 kV ; 1.2/50 \(\mu \mathrm{s}\) \\
\hline & measuring (L1/L2/L3/N) / (supply / outputs) & \(8 \mathrm{kV} ; 1.2 / 50 \mu \mathrm{~s}\) \\
\hline Pollution degree & & 3 \\
\hline
\end{tabular}

Standards/Directives
\begin{tabular}{l|l}
\hline Standards & \begin{tabular}{l} 
IEC/EN 60255-1, IEC/EN 60255-26, IEC/EN 60255-27, \\
ENA - G98/1, G99/1
\end{tabular} \\
\hline Low Voltage Directive & \(2014 / 35 /\) EU \\
\hline EMC Directive & \(2014 / 30 / E U\) \\
\hline RoHS Directive & \(2011 / 65 / E U\) \\
\hline
\end{tabular}

\section*{-}

Electromagnetic compatibility
\begin{tabular}{|c|c|c|}
\hline Interference immunity to & & IEC/EN 60255-26 \\
\hline electrostatic discharge & IEC/EN 61000-4-2 & level \(3,6 \mathrm{kV}\) contact discharge, 8 kV air discharge \\
\hline radiated, radio-frequency, electromagnetic field & IEC/EN 61000-4-3 & level \(3,10 \mathrm{~V} / \mathrm{m} ; 2.7 \mathrm{GHz}\) \\
\hline electrical fast transient / burst & IEC/EN 61000-4-4 & zone B / level 3, \(2 \mathrm{kV} / 5 \mathrm{kHz}\) \\
\hline surge & IEC/EN 61000-4-5 & supply circuit and measuring circuit zone B / level 3; 1 kV L-L \\
\hline conducted disturbances, induced by radio-frequency fields & IEC/EN 61000-4-6 & level \(3,10 \mathrm{~V}\) \\
\hline voltage dips, short interruptions and voltage variations & IEC/EN 61000-4-11 & class 3 \\
\hline Interference emission & & IEC/EN 61000-6-3 \\
\hline high-frequency radiated & & fulfilled \\
\hline high-frequency conducted & & fulfilled \\
\hline
\end{tabular}

\section*{Technical diagrams}

\section*{Load limits curves}


AC load (resistive)


2CDC252192F0205

Derating factor \(F\) at inductive \(A C\) load


DC load (resistive)


Contact lifetime

\section*{Dimensional drawings}
in mm and inches



\section*{Further documentation}
\begin{tabular}{l|l|l}
\hline Document title & Document type & Document number \\
\hline Electronic relays and controls & Catalog & 2CDC110004C02xx \\
\hline CM-UFD.M33M Grid feeding monitoring relay & Instruction sheet & 1SVC560516M0000 \\
\hline CM-UFD.M*M integration into ABB Ability EDCS & Application note & 2CDC112280M0101 \\
\hline
\end{tabular}

You can find the documentation on the internet at www.abb.com/lowvoltage
-> Automation, control and protection -> Electronic relays and controls -> Measuring and monitoring relays.

\section*{CAD system files}

You can find the CAD files for CAD systems at http://abb-control-products.partcommunity.com -> Low Voltage Products \& Systems -> Control Products -> Electronic Relays and Controls.

\section*{Declaration of conformity}

\section*{Protection Relay Type-Test Verification Report}

According to the Engineering Recommendation G99/1
\begin{tabular}{l|l|l}
\hline \multirow{2}{*}{ Product details } & Model & CM-UFD.M33 \\
\cline { 2 - 3 } & Part Number & 1SVR560730R3402 \\
\cline { 2 - 3 } & Software Version & 1.1 .3 \\
\cline { 2 - 3 } & Date & November 2022 \\
\cline { 2 - 4 } & G99 Version & G99/1-9 \\
\hline \multirow{3}{*}{ Manufactured details } & Name & ABB STOTZ-KONTAKT GmbH \\
\cline { 2 - 3 } & Adress & \begin{tabular}{l} 
Eppelheimer Straße 82 \\
69123 Heidelberg \\
Germany
\end{tabular} \\
\hline
\end{tabular}

\section*{Over and Under Voltage Protection Tests LV}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Calibration and Accuracy Tests} \\
\hline Phase & Setting & Time Delay & \multicolumn{4}{|c|}{Pickup Voltage} & \multicolumn{5}{|c|}{Relay Operating Time - step from 230 V to test value} \\
\hline \multicolumn{3}{|l|}{Stage 1 Over Voltage} & Lower Limit & Measured Value & Upper Limit & Result & Test Value & Lower Limit & Measured Value & Upper Limit & Result \\
\hline L1-N & \multirow{3}{*}{\[
\begin{gathered}
262.2 \mathrm{~V} \\
230 \mathrm{~V} \\
\text { system }
\end{gathered}
\]} & \multirow{3}{*}{1.0 s} & \multirow{3}{*}{258.75} & 261.87 V & \multirow{3}{*}{265.65} & Pass & \multirow{3}{*}{266.2} & \multirow{3}{*}{1.0 s} & 1.05 s & \multirow{3}{*}{1.1 s} & Pass \\
\hline L2-N & & & & 261.81 V & & Pass & & & 1.06 s & & Pass \\
\hline L3-N & & & & 261.78 V & & Pass & & & 1.06 s & & Pass \\
\hline \multicolumn{3}{|l|}{Stage 2 Over Voltage} & Lower Limit & Measured Value & Upper Limit & Result & Test Value & Lower Limit & Measured Value & Upper Limit & Result \\
\hline L1-N & \multirow{3}{*}{\[
\begin{gathered}
273.7 \mathrm{~V} \\
230 \mathrm{~V} \\
\text { system }
\end{gathered}
\]} & \multirow{3}{*}{0.5 s} & \multirow{3}{*}{270.25} & 273.37 V & \multirow{3}{*}{277.15} & Pass & \multirow{3}{*}{277.7} & \multirow{3}{*}{0.5 s} & 0.57 s & \multirow{3}{*}{0.6 s} & Pass \\
\hline L2-N & & & & 273.31 V & & Pass & & & 0.56 s & & Pass \\
\hline L3-N & & & & 273.30 V & & Pass & & & 0.56 s & & Pass \\
\hline \multicolumn{3}{|l|}{Under Voltage} & Lower Limit & Measured Value & Upper Limit & Result & Test Value & Lower Limit & Measured Value & Upper Limit & Results \\
\hline L1-N & \multirow{3}{*}{\[
\begin{gathered}
184.0 \mathrm{~V} \\
230 \mathrm{~V} \\
\text { system }
\end{gathered}
\]} & \multirow{3}{*}{2.5 s} & \multirow{3}{*}{180.55} & 183.96 V & \multirow{3}{*}{187.45} & Pass & \multirow{3}{*}{180} & \multirow{3}{*}{2.5 s} & 2.56 s & \multirow{3}{*}{2.6 s} & Pass \\
\hline L2-N & & & & 183.87 V & & Pass & & & 2.56 s & & Pass \\
\hline L3-N & & & & 183.93 V & & Pass & & & 2.56 s & & Pass \\
\hline \multicolumn{12}{|l|}{Stability Tests} \\
\hline \multicolumn{3}{|l|}{Test Description} & Setting & Time Delay & \multicolumn{2}{|l|}{Test Condition (3-Phase Value)} & \multicolumn{2}{|l|}{Test Voltage all phases ph-n} & Test Duration & Confirm No Trip & Result \\
\hline \multicolumn{3}{|l|}{Inside Normal band} & - & ------- & \multicolumn{2}{|l|}{< OV Stage 1} & \multicolumn{2}{|c|}{258.2 V} & 5.00 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Stage 1 Over Voltage} & 262.2 V & 1.0 s & \multicolumn{2}{|l|}{> OV Stage 1} & \multicolumn{2}{|c|}{269.7 V} & 0.95 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Stage 2 Over Voltage} & 273.7 V & 0.5 s & \multicolumn{2}{|l|}{> OV Stage 2} & \multicolumn{2}{|c|}{277.7 V} & 0.45 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Inside Normal band} & --------- & --------- & \multicolumn{2}{|c|}{> UV} & \multicolumn{2}{|c|}{188 V} & 5.00 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Under Voltage} & 184.0 V & 2.5 s & \multicolumn{2}{|c|}{< UV} & \multicolumn{2}{|c|}{180 V} & 2.45 s & Pass & Pass \\
\hline
\end{tabular}

Overvoltage test - Voltage shall be stepped from 258 V to the test voltage and held for the test duration and then stepped back to 258 V .
Undervoltage test - Voltage shall be stepped from 188 V to the test voltage and held for the test duration and then stepped back to 188 V .

\section*{Over and Under Voltage Protection HV}

Tests referenced to 110 V ph-ph VT output
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Calibration and Accuracy Tests} \\
\hline Phase & Setting & Time Delay & \multicolumn{4}{|c|}{Pickup Voltage} & \multicolumn{5}{|c|}{Relay Operating Time - measured value \(\pm 2 \mathrm{~V}\)} \\
\hline \multicolumn{3}{|l|}{Stage 1 Over Voltage} & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & Measured Value & Upper Limit & Result & \begin{tabular}{l}
Test \\
Value
\end{tabular} & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & Measured Value & Upper Limit & Result \\
\hline L1-N & \multirow{3}{*}{\[
\begin{gathered}
121 \mathrm{~V} \\
110 \mathrm{~V} \text { VT } \\
\text { secondary }
\end{gathered}
\]} & \multirow{3}{*}{1.0 s} & \multirow{3}{*}{119.35} & 120.75 V & \multirow{3}{*}{122.65} & Pass & \multirow[b]{3}{*}{Measured value plus 2 V} & \multirow{3}{*}{1.0 s} & 1.06 s & \multirow{3}{*}{1.1 s} & Pass \\
\hline L2-N & & & & 121.27 V & & Pass & & & 1.06 s & & Pass \\
\hline L3-N & & & & 120.82 V & & Pass & & & 1.06 s & & Pass \\
\hline \multicolumn{3}{|l|}{Stage 2 Over Voltage} & Lower Limit & Measured Value & Upper Limit & Result & Test Value & Lower Limit & Measured Value & Upper Limit & Result \\
\hline L1-N & \multirow{3}{*}{\[
\begin{gathered}
\mathbf{1 2 4 . 3} \mathbf{~ V} \\
110 \mathrm{VVT} \\
\text { secondary }
\end{gathered}
\]} & \multirow{3}{*}{0.5 s} & \multirow{3}{*}{122.65} & 124.06 V & \multirow{3}{*}{125.95} & Pass & \multirow[b]{3}{*}{Measured value plus 2 V} & \multirow{3}{*}{0.5 s} & 0.56 s & \multirow{3}{*}{0.6 s} & Pass \\
\hline L2-N & & & & 124.12 V & & Pass & & & 0.56 s & & Pass \\
\hline L3-N & & & & 124.02 V & & Pass & & & 0.56 s & & Pass \\
\hline \multicolumn{3}{|l|}{Under Voltage} & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & Measured Value & Upper Limit & Result & Test Value & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & Measured Value & Upper Limit & Results \\
\hline L1-N & \multirow{3}{*}{\[
\begin{gathered}
88.0 \mathrm{~V} \\
110 \mathrm{~V} \mathrm{VT} \\
\text { secondary }
\end{gathered}
\]} & \multirow{3}{*}{2.5 s} & \multirow{3}{*}{86.35} & 87.85 V & \multirow{3}{*}{89.65} & Pass & \multirow{3}{*}{Measured value minus 2 V} & \multirow{3}{*}{2.5 s} & 2.56 s & \multirow{3}{*}{2.6 s} & Pass \\
\hline L2-N & & & & 87.91 V & & Pass & & & 2.56 s & & Pass \\
\hline L3-N & & & & 87.70 V & & Pass & & & 2.56 s & & Pass \\
\hline \multicolumn{12}{|l|}{Stability Tests} \\
\hline \multicolumn{3}{|l|}{Test Description} & Setting & Time Delay & \multicolumn{2}{|l|}{Test Condition (3-Phase Value)} & \multicolumn{2}{|l|}{Test Voltage all phases sph-ph} & Test Duration & Confirm No Trip & Result \\
\hline \multicolumn{3}{|l|}{Inside Normal band} & - & --------- & \multicolumn{2}{|l|}{< OV Stage 1} & \multicolumn{2}{|c|}{119 V} & 5.00 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Stage 1 Over Voltage} & 121 V & 1.0 s & \multicolumn{2}{|l|}{> OV Stage 1} & \multicolumn{2}{|c|}{122.3 V} & 0.95 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Stage 2 Over Voltage} & 124.3 V & 0.5 s & \multicolumn{2}{|l|}{> OV Stage 2} & \multicolumn{2}{|c|}{126.3 V} & 0.45 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Inside Normal band} & --------- & ------- & \multicolumn{2}{|c|}{> UV} & \multicolumn{2}{|c|}{90 V} & 5.00 s & Pass & Pass \\
\hline \multicolumn{3}{|l|}{Under Voltage} & 88 V & 2.5 s & \multicolumn{2}{|c|}{< UV} & \multicolumn{2}{|c|}{86 V} & 2.45 s & Pass & Pass \\
\hline
\end{tabular}

\section*{Over and Under Frequency Protection}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Calibration and Accuracy Tests} \\
\hline Setting & Time & \multicolumn{4}{|c|}{Pickup Frequency} & \multicolumn{5}{|c|}{Relay Operating Time} \\
\hline \multicolumn{2}{|l|}{Over Frequency} & Lower Limit & Measured Value & Upper Limit & Result & Freq step & Lower Limit & Measured Value & Upper Limit & Result \\
\hline 52 Hz & 0.5 s & 51.90 & 52.00 Hz & 52.10 & Pass & \[
\begin{gathered}
51.7- \\
52.3 \mathrm{~Hz}
\end{gathered}
\] & 0.50 s & 0.54 s & 0.60 s & Pass \\
\hline \multicolumn{2}{|l|}{Stage 1 Under Frequency} & Lower Limit & Measured Value & Upper Limit & Result & Freq step & Lower Limit & Measured Value & Upper Limit & Result \\
\hline 47.5 Hz & 20 & 47.40 & 47.51 Hz & 47.60 & Pass & \[
\begin{gathered}
47.8- \\
47.2 \mathrm{~Hz}
\end{gathered}
\] & 20.0 s & 20.04 s & 20.2 s & Pass \\
\hline \multicolumn{2}{|l|}{Stage 2 Under Frequency} & Lower Limit & Measured Value & Upper Limit & Result & Freq step & Lower Limit & Measured Value & Upper Limit & Results \\
\hline 47 Hz & 0.5 s & 46.90 & 47.01 Hz & 47.1 & Pass & \[
\begin{gathered}
47.3- \\
46.7 \mathrm{~Hz}
\end{gathered}
\] & 0.50 s & 0.54 s & 0.60 s & Pass \\
\hline \multicolumn{11}{|l|}{Stability Tests} \\
\hline \multicolumn{2}{|l|}{Test Description} & Setting & Time Delay & \multicolumn{2}{|l|}{Test Condition} & \multicolumn{2}{|l|}{Test Frequency} & Test Duration & Confirm No Trip & Result \\
\hline \multicolumn{2}{|l|}{Inside Normal band} & --------- & --------- & \multicolumn{2}{|c|}{< OF} & \multicolumn{2}{|c|}{51.8 Hz} & 120 s & Pass & Pass \\
\hline \multicolumn{2}{|l|}{Over Frequency} & 52 Hz & 0.5 s & \multicolumn{2}{|c|}{> OF} & \multicolumn{2}{|c|}{52.2 Hz} & 0.45 s & Pass & Pass \\
\hline \multicolumn{2}{|l|}{Inside Normal band} & --------- & --------- & \multicolumn{2}{|r|}{> UF Stage 1} & \multicolumn{2}{|c|}{47.7 Hz} & 30 s & Pass & Pass \\
\hline \multicolumn{2}{|l|}{Stage 1 Under Frequency} & 47.5 Hz & 20 s & \multicolumn{2}{|r|}{< UF Stage 1} & \multicolumn{2}{|c|}{47.2 Hz} & 19.5 s & Pass & Pass \\
\hline \multicolumn{2}{|l|}{Stage 2 Under Frequency} & 47 Hz & 0.5 s & \multicolumn{2}{|l|}{< UF Stage 2} & \multicolumn{2}{|c|}{46.8 Hz} & 0.45 s & Pass & Pass \\
\hline
\end{tabular}

Over frequency test - Frequency shall be stepped from 51.8 Hz to the test frequency and held for the test durationand then stepped back to 51.8 Hz .
Under frequency test - Frequency shall be stepped from 47.7 Hz to the test frequency and held for the test duration and then stepped back to 47.7 Hz .
—
Loss-of-Mains (LOM) Protection Test
Calibration and Accuracy Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Ramp in range 49.0-51.0 Hz} \\
\hline & \multicolumn{4}{|c|}{Pickup (+ / - \(0.025 \mathrm{Hzs}^{-1}\) )} & \multicolumn{5}{|l|}{Relay Operating Time RoCoF \(= \pm 0.05 / 0.10 \mathrm{Hzs}^{-1}\) above setting} \\
\hline Setting \(=1.0 \mathrm{Hzs}^{-1}\) & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & Measured Value & Upper Limit & Result & Test Condition & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & Measured Value & Upper Limit & Result \\
\hline Increasing Frequency & 0.975 & \(1.01 \mathrm{~Hz} / \mathrm{s}\) & 1.025 & Pass & \(1.10 \mathrm{Hzs}^{-1}\) & \(>0.5 \mathrm{~s}\) & 0.52 s & \(<1.0\) s & Pass \\
\hline Reducing Frequency & 0.975 & \(1.01 \mathrm{~Hz} / \mathrm{s}\) & 1.025 & Pass & \(1.10 \mathrm{Hzs}^{-1}\) & \(>0.5 \mathrm{~s}\) & 0.52 s & \(<1.0\) s & Pass \\
\hline \multicolumn{10}{|c|}{Ramp in range 48.5-51.5 Hz} \\
\hline Setting \(=1.0 \mathrm{Hzs}^{-1}\) & Lower Limit & Measured Value & Upper Limit & Result & Test Condition & Lower Limit & Measured Value & Upper Limit & Result \\
\hline Increasing Frequency & 0.975 & \(1.00 \mathrm{~Hz} / \mathrm{s}\) & 1.025 & Pass & \(3.00 \mathrm{Hzs}^{-1}\) & \(>0.5 \mathrm{~s}\) & 0.70 s & \(<1.0 \mathrm{~s}\) & Pass \\
\hline Reducing Frequency & 0.975 & \(1.00 \mathrm{~Hz} / \mathrm{s}\) & 1.025 & Pass & \(3.00 \mathrm{Hzs}^{-1}\) & \(>0.5 \mathrm{~s}\) & 0.70 s & \(<1.0\) s & Pass \\
\hline
\end{tabular}

\section*{Stability Tests}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Ramp in range 49.0-51.0 Hz} \\
\hline & Test Condition & Test frequency ramp & Test Duration & Confirm No Trip & Result \\
\hline Inside Normal band & \[
\begin{gathered}
<\text { RoCoF } \\
(\text { increasing f) }
\end{gathered}
\] & \(+0.95 \mathrm{Hzs}^{-1}\) & 2.1 s & Pass & Pass \\
\hline Inside Normal band & < RoCoF (reducing f) & \(-0.95 \mathrm{Hzs}^{-1}\) & 2.1 s & Pass & Pass \\
\hline Inside Normal band & \[
\begin{gathered}
>\text { RoCoF } \\
\text { (increasing f) }
\end{gathered}
\] & \[
\begin{gathered}
+1.20 \mathrm{Hzs}^{-1}(\text { ramp between } 49.80 \\
\text { and } 50.34 \mathrm{~Hz})
\end{gathered}
\] & 0.45 s & Pass & Pass \\
\hline Inside Normal band & \(>\) RoCoF (reducing f) & \[
\begin{gathered}
-1.20 \mathrm{Hzs}^{-1} \text { (ramp between } 50.30 \\
\text { and } 49.76 \mathrm{~Hz}
\end{gathered}
\] & 0.45 s & Pass & Pass) \\
\hline
\end{tabular}

\section*{LOM Protection - Stability Tests}
\begin{tabular}{l|c|c|c}
\hline & Start Frequency & Change & Confirm No trip \\
\hline Positive Vector Shift & 49.5 Hz & +50 degrees & Pass \\
\hline Negative Vector Shift & 50.5 Hz & -50 degrees & Pass \\
\hline
\end{tabular}

\section*{ABB STOTZ-KONTAKT GmbH}

Eppelheimer Straße 82 69123 Heidelberg, Germany

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potentia errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB AG. Copyright© 2023 ABB AG
All rights reserved```


[^0]:    *) Device defaults, not affected by loading a setting

