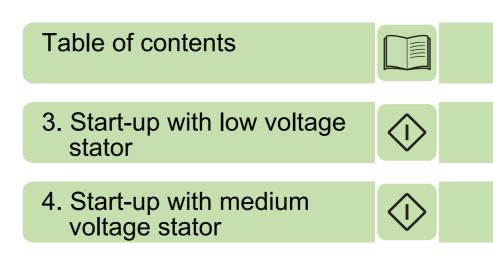
System description and start-up guide ACS800-67 wind turbine converters

List of related manuals


ACS800-67 manuals	Code (English)
ACS800-67 wind turbine converters for asynchronous slip ring generators hardware manual	3AFE68392454
ACS800-67 wind turbine converters system description and start-up guide	3AUA0000095094
Firmware manuals	
ACS800 IGBT supply control program firmware manual	3AFE68315735
ACS800 grid-side control program firmware manual	3AUA0000075077
ACS800-67(LC) doubly-fed induction generator control program firmware manual	3AUA0000071689
Option manuals	

Manuals for fieldbus adapters, etc.

For manuals, contact your local ABB representative.

System description and start-up guide

ACS800-67 wind turbine converters

© 2017 ABB Oy. All Rights Reserved.

3AUA0000095094 Rev B EN EFFECTIVE: 2017-12-31

Table of contents

List of related manuals	 	 	 2

1. About this manual

hat this chapter contains)
pplicability)
afety instructions)
rget audience)
rpose of the manual)
ontents of this manual)
ontents of other related manuals11	
DriveWindow	ĺ
Irther information)
erms and abbreviations)

2. System description

What this chapter contains	13
General	13
ACS800-67	14
Wind turbine system with low voltage stator (690 V)	15
Wind turbine system with medium voltage stator (> 1000 V)	15
Converter system	16
Control of generator power	18
Operational speed range of a typical wind turbine	19
Wind turbine system operating speed area	20
Control of torque and reactive power via rotor-side converter	21
Control of torque and reactive power via grid-side converter	25
Overview of converter interfaces	27
Converter control	28
General	-
PLC interface	
Fieldbus control	
Grid codes	
Example of grid code regulations in different countries	
Example limit curves	
Description of parameter settings	
Grid fault ride-trough capability	
Grid support	
Grid support areas	
Grid support example	
Stator circuit connection to grid	
Stator breaker only (par. 16.20 GRID CONNECT MODE set to MCB3)	
Main circuit breaker (par. 16.20 GRID CONNECT MODE set to MCB1+MCB3/A)	
Main circuit breaker (par. 16.20 GRID CONNECT MODE set to MCB1+MCB3/B)	
Stator contactor (par. 16.20 GRID CONNECT MODE set to MCB1+MCB3/C)	
Settings	
Grid connection procedure	
Phasing checks executed at start-up	
Grid phasing	40

Encoder phasing	. 40
Stator phasing	. 40
Rotor phasing	. 40

3. Start-up with low voltage stator

What this chapter contains	41
How to start-up the converter	42
Safety	42
Power-up	42
Manual start-up data entering	42
Time setting	
Digital inputs	45
Grid-side converter and crowbar test	45
Grid-side converter and DC chopper test	
Rotor-side converter test	50
Stator voltage synchronization test	51
Start-up of the air damper	
Final settings	54

4. Start-up with medium voltage stator

What this chapter contains	55
How to start-up the converter	
Safety	56
Power-up	56
Manual start-up data entering	56
Time setting	58
Digital inputs	58
Grid-side converter and crowbar test	59
Rotor-side converter test	62
Stator voltage synchronization test	63
Start-up of the air damper	65
Final settings	66
Starting sequence	67
Start-up measurements	70
Stator current transformer polarity check	70
Phase U test	70
Phase W test	
Test at zero speed	73
Start in local control mode	74
Voltage and current waveform examples	75

5. Practical examples

What this chapter contains 7 Setting up the fieldbus 7 Fieldbus interfaces 7	77
Entering start-up data and torque settings	78
Calculating/setting the motor nominal torque	
Stator current and voltage measurement	79
NUIM-6x voltage measurement 7 NUIM-1x voltage measurement 7	

NUIM-1x and NUIM-6x current measurements	79
Generator data	81
Generator rating plate equivalent circuit parameters	81
Parameters of parameter group 99	83
Parameter 99.05 MOTOR NOM SPEED	84
Generator nominal power calculation	
Setting the equivalent circuit values to the parameters	85
Mutual inductance Xm and rotor resistance Rr calculations	86
Current measurement of the grid-side converter	87
Example	88
ABB Drives communication profile	
Starting sequence	
Fault sequence, profile B	
Normal stop sequence, profile B	91
Starting sequence when the grid-side converter is started first separately	92
Normal start and stop sequence, ABB drives profile	93
Datasets	93
Fieldbus signals	93
Configuring the NETA-01 Ethernet Adapter Module	94
Creating a full Backup Package and saving it in .BPG format	96
Backup Package	
Restoring a backup file into the RDCU or NDCU board	
Saving a parameter file (.dwp) to the PC	
Downloading parameters into the converter	
Updating the firmware	
Communication parameter settings	
Rotor-side converter	
Grid-side converter	
Changing the rotation direction of the generator	
General	
Clockwise rotation at drive end (D end)	
Counterclockwise rotation at drive end (D end)	
Downloading the diagnostics of APBU branching unit	
Setting the parameters according to grid code	
Spanish grid code	
Italian grid code	
UK grid code	111


6. Tracing the source of warnings, limits and faults

What this chapter contains	113
Warnings	113
Limits	113
Torque limit	113
Power limit	113
Faults	114
How to identify the fault and what to do in a specific fault situation	
Warning and fault messages	114
Checking the phase sequence of grid-side converter voltage measurement	115
NUIM board in use (grid-side converter control program IXXR72xx)	
NAMU / BAMU board in use (grid-side converter control program IWXR74xx)	
Faults in measurements	117

Further information

Product and service inquiries	119
Product training	119
Providing feedback on ABB manuals	119

About this manual

What this chapter contains

This chapter describes the intended audience, purpose and contents of the manual. The chapter also describes the contents of other related manuals briefly, and contains information about contacting ABB.

Applicability

This manual describes the standard ACS800-67 wind turbine converter but it can be applied to customized units as well.

The control programs referred to in this manual are

- grid-side converter control programs:
 - IGBT supply control program IXXR72xx (NUIM board in use) or
 - grid-side control program IWXR74xx (NAMU / BAMU board in use)
- rotor-side converter control programs:
 - doubly-fed induction generator control program AJXC24xx.

Safety instructions

Converter hardware manual ACS800-67 wind turbine converters for asynchronous slip ring generators hardware manual [3AFE68392454 (English)] contains the general safety instructions that must be followed during installation, start-up, maintenance and use of the converter.

Target audience

This manual is intended for people who conduct start-ups and operate with the converter. Read the manual before working on the converter. You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

Purpose of the manual

This manual describes the operation of the whole wind turbine converter arrangement as one system. The manual is also a start-up guide with detailed examples on how to set the program parameters to achieve the optimal system operation.

The detailed information on the converter is divided into hardware, firmware and option manuals. Subjects covered in each manual are listed in this chapter.

Contents of this manual

The chapters of this manual are briefly described below.

About this manual introduces this manual.

System description describes the wind turbine converter, its optional functions and wind turbine and converter control briefly. The chapter includes system block diagrams.

Start-up with low voltage stator gives instructions on how to start-up the wind turbine converter in case of a low voltage stator.

Start-up with medium voltage stator gives instructions on how to start-up the wind turbine converter in case of a medium voltage stator.

Practical examples contains examples on how to determine optimum parameter settings for the converter.

Tracing the source of warnings, limits and faults describes most typical warnings, limits and faults of the converter.

Contents of other related manuals

The manuals delivered with the converter are listed on the inside of the front cover of this manual. The table below lists the main subjects in each manual.

When delivered	Manual / Contents
In all deliveries	ACS800-67 wind turbine converters system description and start-up guide [3AUA0000095094 (English)]
	See section Contents of this manual on page 10.
In all deliveries	ACS800-67 wind turbine converters for asynchronous slip ring generators hardware manual [3AFE68392454 (English)]
	This manual covers the following subjects about the converter:
	• safety
	operation basics
	hardware description
	type code description
	mechanical installation
	planning the electrical installation
	electrical installation
	installation checklist
	maintenance
	technical data.
In deliveries with	ACS800 IGBT supply control program firmware manual [3AFE68315735 (English)]
IGBT supply control program IXXR72xx	This manual describes the program controlling the grid-side converter. The following subjects apply to the grid-side converter of the wind turbine converter as such:
	actual signals and parameters
	fault tracing.
In deliveries with grid-side control program IWXR74xx	<i>Grid-side control program for ACS800 wind turbine converters firmware manual</i> [3AUA0000075077 (English)]
	This manual describes the program controlling the grid-side converter. The following subjects apply to the grid-side converter of the wind turbine converter as such:
	signals and parameters
	• fault tracing.
In all deliveries	ACS800-67(LC) doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)]
	This manual describes the program controlling the rotor-side converter. The following subjects apply to the rotor-side converter of the wind turbine converter as such:
	signals and parameters
	• fault tracing.
With the option	Option manuals
	The option manuals describe the options.

DriveWindow

DriveWindow 2 user's manual [3BFE64560981 (English)] describes the use of the DriveWindow PC tool.

Further information

Address any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit. If the local ABB representative can not be contacted, address inquiries to nearest country that has support for wind turbine converters. See detailed contact information from the back cover of this manual.

In case of fault situations, ensure that the information stated below is available to get fast problem solving assistance:

- fault logger data
- data logger files (data logger 1 and data logger 2) from grid-side and rotor-side converter control programs
- parameter files from the grid-side and rotor-side converter control programs.

In DriveWindow,

- save the parameters with File / Parameters / Save as command to a .dwp file (for instructions, see page 100)
- copy the fault data from the Fault logger view and paste it to a .txt file
- copy the graphs from the Data logger view.

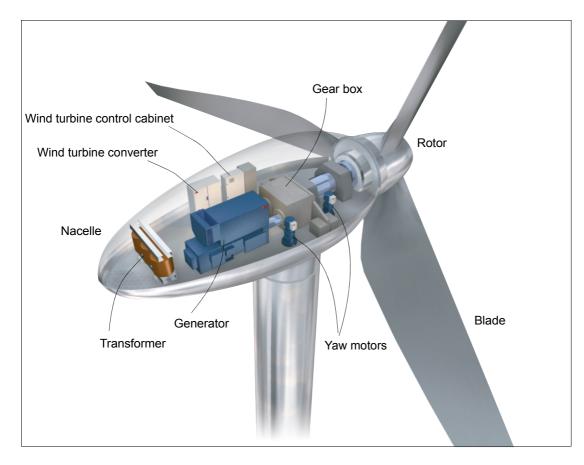
Terms and abbreviations

See also ACS800-67 wind turbine converters for asynchronous slip ring generators hardware manual [3AFE68392454 (English)].

Abbreviation	Explanation			
BAMU	Auxiliary measurement unit			
DFIG	G Doubly-fed induction generator			
DTC	Direct Torque Control			
Grid-side converter	A converter that is connected to the electrical power network (grid) and is capable of transferring energy from the converter DC link to the grid and vice versa. The grid-side converter is also called ISU (see <i>ISU</i>).			
IGBT	Insulated gate bipolar transistor			
ISU	IGBT supply unit. IGBT supply modules under control of one control board, and related components.			
INU	Inverter unit. Inverter module(s) under control of one control board, and related components. One INU typically controls one generator.			
LVRT	Low-voltage ride-through			
NAMU	Auxiliary Measuring Unit. Performs voltage measurement for RMIO board of the grid- side converter.			
NUIM	Voltage and Current Measurement Unit. Performs voltage and current measurement for AMC board.			
MCB	Main circuit breaker			
PLC	Programmable logic controller			
PWM	Pulse width modulation			
Rotor-side converter				
RUSB	USB-DDCS adapter			
Wind turbine converter	A converter for controlling AC generators in wind turbine applications.			
WTC	Wind turbine controller			

System description

What this chapter contains


This chapter describes the main components of a wind turbine and describes the functionality of the wind turbine converter as a part of a complete wind turbine system.

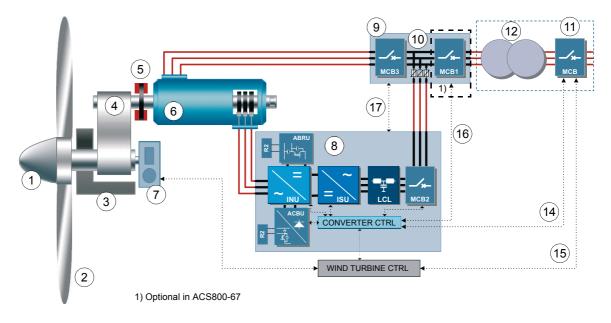
General

Variable-speed wind turbine concepts can be divided in two main categories, wind turbine systems equipped with a doubly-fed asynchronous generator or wind turbine systems equipped with an induction generator like squirrel-cage-, synchronous- or permanent magnet synchronous generator. Difference between these concepts is that in doubly-fed systems one-third of the rated generator power is fed through the wind turbine converter to the 3-phase electrical power network (grid) while in systems equipped with eg, permanent magnet synchronous generators whole power is fed through the wind turbine converter to the electrical power network.

In wind power applications, the doubly-fed asynchronous generator rotor is accelerated by the wind and the mechanical speed is controlled by the pitch of the blades to stay within the operating speed range until the wind turbine converter is started. In order to stop the wind turbine converter, the breaker(s) is/are opened and the rotor is braked to standstill by pitch control and mechanical brakes. Doubly-fed systems have typically a gear box for coupling the generator shaft to turbine hub, active control of turbine blade pitch for maximizing production and controlling mechanical speed, and variable speed operation depending on the rating of the wind turbine converter relative to turbine rating (eg, $\pm 30\%$ of the generator synchronous speed).

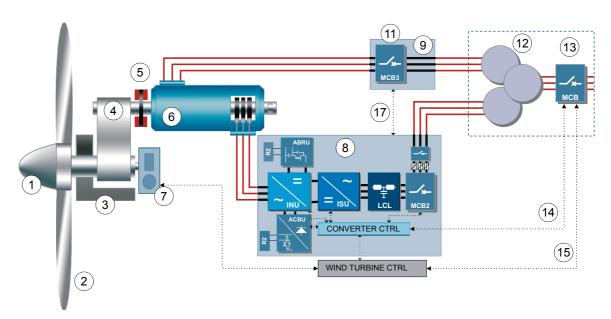
14 System description

The main components of a wind turbine system are presented in the picture below.


ACS800-67

ACS800-67 is air-cooled four-quadrant wind turbine converter for wind turbine applications. The converter can be located up in the nacelle or in down tower of the wind turbine.

The converter allows independent control of real and reactive flow in either direction (grid to rotor), or confined to unidirectional (rotor to grid) real power flow. In doubly-fed systems the stator circuit of the doubly-fed induction generator (DFIG) is connected via stator circuit breaker to the 3-phase electrical power network while the rotor circuit is connected to a wind turbine converter via slip rings.

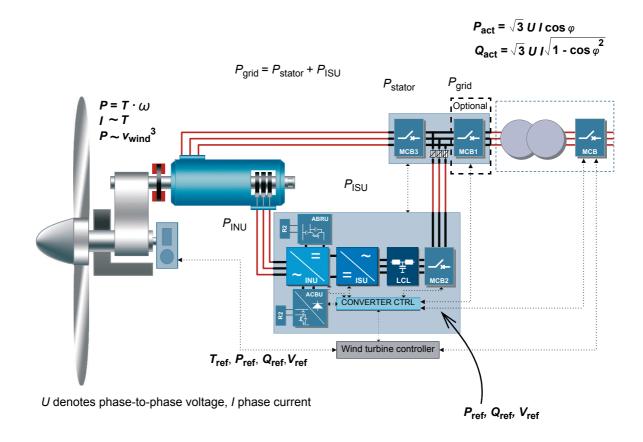

When the rotor is accelerated by the wind and the speed is controlled by the pitch of the blades, the converter can be controlled either in torque control mode or in active power control mode. If rotor mechanical speed is within acceptable area, the converter can be started. When the grid-side converter has charged the intermediate DC link properly (**MCB2 closed**), and the rotor-side converter has magnetized the generator rotor properly (correct voltage magnitude and phase sequence between the stator and grid), stator circuit breaker/contactor can be closed (**MCB3**), and the converter is ready to operate and deliver power to the 3-phase electrical power network.

In order to stop the converter, the breakers (**MCB2 and MCB3**) are opened and the rotor is braked to standstill by pitch control and mechanical brakes. Block diagrams of the wind turbine system are shown below. The system includes a doubly-fed AC induction generator and the wind turbine converter.

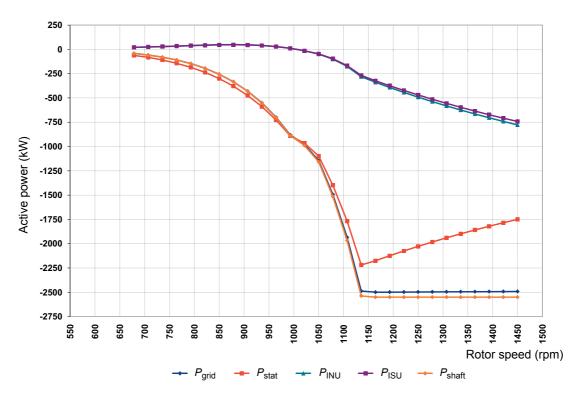
Wind turbine system with low voltage stator (690 V)

Wind turbine system with medium voltage stator (> 1000 V)

No.	Description	No.	Description
1	Rotor hub	10	Low voltage switchgears
2	Blades	11	Medium voltage switchgear
3	Rotor bearing	12	Turbine transformer
4	Gearbox	13	High voltage switchgear
5	Brake system	14	MCB EMERGENCY OPEN CTRL
6	Doubly-fed induction generator	15	MCB CTRL
7	Pitch drive	16	MCB1 ON/OFF CTRL
8	Wind turbine converter	17	MCB3 ON/OFF CTRL
9	Power cabinet		


Converter system

Doubly-fed asynchronous generators are essentially wound rotor induction machines with variable frequency excitation of the rotor circuit, incorporating rotor via frequency converter. Ability to convert mechanical energy into electrical energy (or vice versa) is based on electromagnetic induction. In wind power applications, the doubly-fed asynchronous generator is controlled to operate as generator quadrature, and thus the generator stator will always generate energy to the 3-phase electrical power network.


Wind turbine converter consists of two parts, ie, rotor-side converter and grid-side converter. Between these two converters, a DC link capacitor is placed as an energy storage in order to keep the voltage variations (or ripple) in the DC link small. Both converters are controlled independently by internal control firmware based on Direct Torque Control (DTC) technology.

The grid-side converter is an IGBT based module equipped with AC (optional) and DC fuses and an LCL filter that suppresses the line harmonics of voltage and current. The grid-side converter is controlled by RDCU-12 control unit with the grid-side control program. The rotor-side converter consists of IGBT based modules and is controlled by NDCU-33CX control unit with the doubly-fed induction generator control program. The control unit also controls the grid-side converter via a fiber optic link.

With the rotor-side converter, it is possible to control the torque or the speed of the generator and also the power factor at the stator terminals. The grid-side converter keeps the DC link voltage constant. Wind turbine systems equipped with doubly-fed asynchronous generator, the stator always generates energy to the 3-phase electrical power network, however the direction of the power produced by the rotor depends on the sign of the slip frequency. When the slip frequency is positive (sub-synchronous operation), the energy is taken from the 3-phase electrical power network through the grid-side converter and fed by the rotor-side converter to the rotor via slip rings. In sub-synchronous operation, a part of the stator generated power is circulated back to the rotor. These power flows are shown in the picture below.

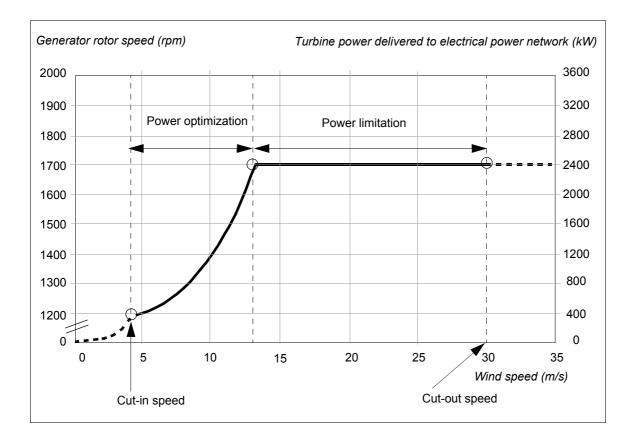
Below is a power versus speed curve example of a doubly-fed induction generator that has a synchronous speed of 1000 rpm and nominal speed of 1150 rpm.

Control of generator power

The generator power can be controlled by adjusting torque or speed:

$$P = T \cdot \omega = T \cdot \frac{2 \pi \cdot n}{60}$$

where


 $P \doteq \text{generator power (W)}$

 $T \triangleq \text{generator torque } (N \cdot m)$

 ω \triangleq angular speed of the generator (rad/s)

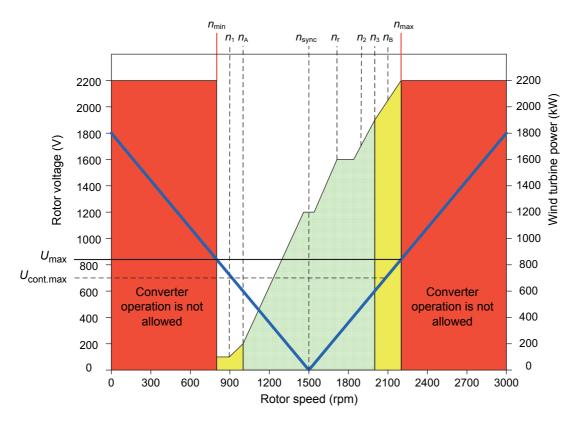
 $n \triangleq rotor mechanical speed (1/min <math>\triangleq rpm)$.

In normal operation, the converter controls the generator torque. However, either a torque or an active power reference to the converter is supported. The overriding wind turbine controller (WTC) gives a torque reference (or an active power reference) to the converter that generates a specific torque on the generator shaft. The overriding wind turbine controller defines the needed torque/power reference as a function of wind speed and turbine characteristics. A typical wind turbine power vs. speed curve is presented below. It illustrates the operational speed range of the turbine between the cut-in and cut-out speeds. Cut-in speed is the minimum wind speed at which power generation is reasonable. Cut-out speed is the maximum operating speed that the wind turbine system can tolerate. In the example below, the generator is for 1700 rpm and 2400 kW.

Operational speed range of a typical wind turbine

Wind power increases cubically as wind speed increases:

$$P_{\rm w} = \rho \cdot \frac{c_{\rm p}(\lambda,\delta)}{2} \cdot A_{\rm r} \cdot v_{\rm w}^3$$


where

$$\begin{array}{lll} P_{w} & \triangleq \mbox{ wind power} \\ \rho & \triangleq \mbox{ air density} \\ c_{p} & \triangleq \mbox{ performance coefficient, } \lambda \mbox{ tip speed ratio, } \delta \mbox{ pitch angle} \\ A_{r} & \triangleq \mbox{ rotor surface} \\ v_{w} & \triangleq \mbox{ wind speed.} \end{array}$$

There is a minimum wind speed at which power generation is reasonable (cut-in speed) and a maximum speed at which the turbine can be operated safely (cut-out speed). At a certain wind speed, the turbine controller must limit the rotor speed by changing the pitch angle.

Wind turbine system operating speed area

The example below illustrates the generator speed control in different wind speed ranges.

In operating range $n_1...n_3$ the rotational speed is under normal operating conditions.

Generator rotational speeds:

 $n_{\min} \stackrel{\frown}{=} \min \min \text{ minimum rotor speed which may never be reached, not even momentarily 1)}$

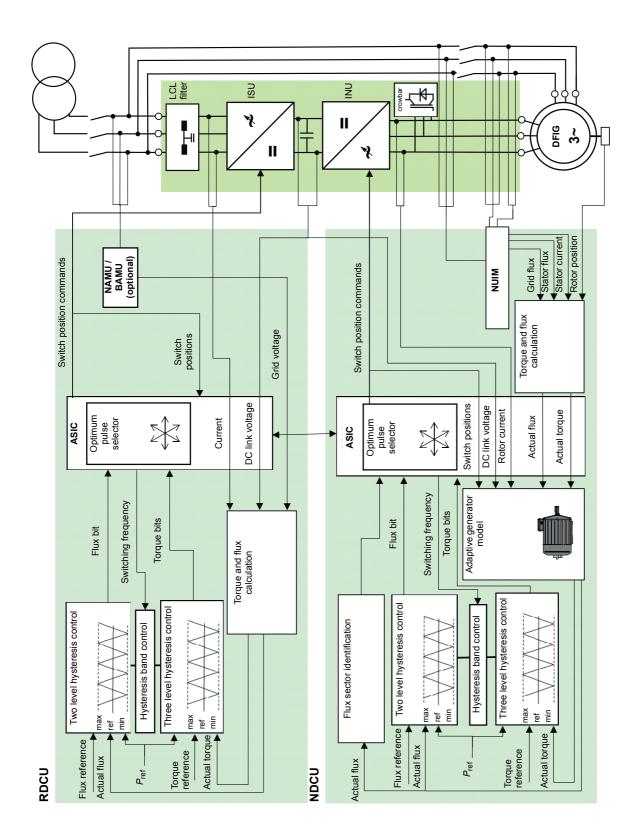
 $n_{\text{max}} \stackrel{\frown}{=} \text{maximum rotor speed which may never be exceeded, not even momentarily 1)}$

- n_A [≙] cut-in speed equals to the converter minimum operating speed while converter starts and generator stator synchronisation is allowed (20.21 SWITCH ON SPEED and 20.22 SWITCH OFF SPEED levels)
- *n*_B [≙] cut-out speed ie, the speed at which the turbine control system must immediately shut down the wind turbine
- *n*_r [≙] rated speed ie, rotational speed at rated wind speed to generate nominal power to electrical power network

$n_{\text{sync}} \stackrel{\frown}{=} \text{generator synchronous speed}$

1) Activation speed ie, the rotational speed at which the turbine safety system must be triggered immediately (wind turbine and pitch level protection)

2) If the speed is below (n_1) or outside (n_3) the speed area, the converter may be damaged due to high rotor voltage during the shutdown procedure. Generator stator synchronisation to electrical power network is not allowed in any circumstances and grid disconnection is always required.


Control of torque and reactive power via rotor-side converter

With DTC technology field orientation is achieved by using advanced generator theory to calculate the accurate generator torque. The performance of DTC controlled wind turbine converter is most effective and benefits are eg, fast torque response, accurate control also at low frequencies, torque repeatability and accuracy of dynamic and static speed operations.

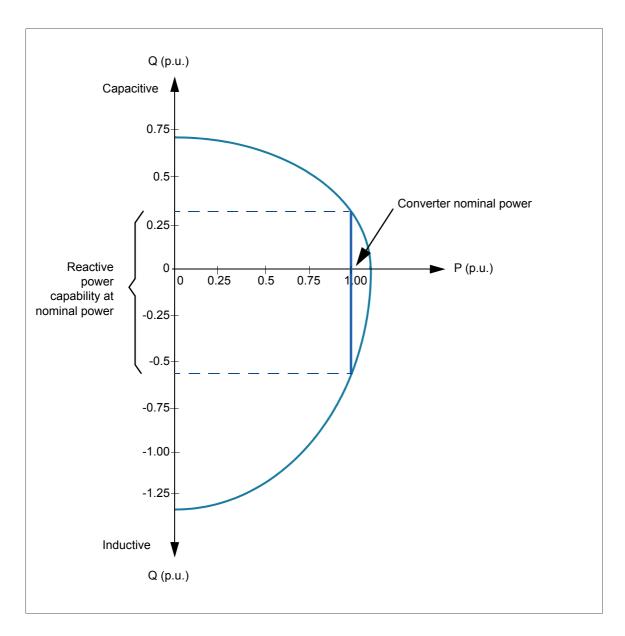
The main difference between DTC and conventional PWM is that the torque is controlled at the same time level as power switches (25 microseconds). There is no separate voltage and frequency controlled PWM modulator. All selections of the switches are based on the electromagnetic state of the generator and torque demand given by turbine control system.

The controlling variables of the DTC are generator magnetizing flux and generator torque. In doubly-fed induction generator systems, the voltage in rotor/stator windings forms the current and magnetic flux by changing the direction of the voltage in rotor windings. The direction of the flux can also be changed. By changing the voltage direction in 3-phase generator rotor windings in the correct order, the magnetic flux of the generator rotor will follow this flux with a certain slip. There are eight different switching positions in the two-level converter that can affect the flux and torque of the generator. In two positions the voltage is zero, ie, when all the phases are connected to the same DC link, either negative or positive. In remaining six switching positions voltage is created in the generator rotor windings creating magnetic flux. In addition, the DTC principle is used to control the power factor at the stator terminals of the doubly-fed induction generator to desired level and to synchronize the stator to the 3-phase electrical power network.

The figure below shows the block diagram of the torque and power factor controller of the doubly-fed asynchronous generator fed from the rotor-side.

The basic DTC block selects the inverter switch states so that tangential motion of the flux vector is controlled by the torque error and the radial motion of the flux is controlled by the flux error. The torque reference is supplied by the WTC. The torque feedback is calculated by using stator-side quantities (at grid frequencies) ie, by a cross product of stator flux and stator current.

The rotor-side flux reference is chosen to achieve the desired power factor at the stator terminals. The operating flux level of the stator flux is completely dependent on the grid voltage and therefore the rotor flux reference is dependent on actual stator flux. The figure below shows the vector diagram of stator voltage, current and flux and rotor flux at leading and lagging power factors when the stator is regenerating to the electrical power network.

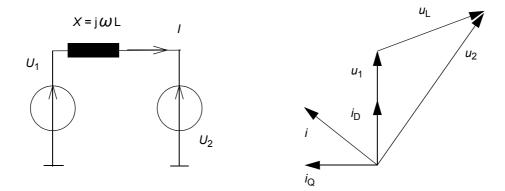


Symbol	Description
Us	stator voltage
Ψr	rotor flux
ψs	stator flux
I _s	stator current
I _{ds}	d-axis current of the I _s
l _{qs}	q-axis current of the <i>I</i> _s

Using stator voltage (and therefore the stator flux) as reference axis, torque is proportional to the product of I_{ds} and $\Psi \circ$. The magnitude and sign of I_{qs} determine the type of reactive (lagging or leading) power drawn by the stator.

24 System description

An example curve of maximum reactive power capability as a function of the active power (power factor about 0.95 capacitive and 0.86 inductive) is shown below. Reactive power capability depends on the characteristics of the generator.



Control of torque and reactive power via grid-side converter

The fundamental theory of grid-side converter can be simplified to be analog to the synchronous generator. One voltage source is the electrical power network and the other voltage source is the grid-side converter. The voltages and currents can be presented as vectors. When the reactive power is zero, the current vector is in the same direction with the grid voltage vector. In the figure below, the current contains capacitive component, ie, the current is leading the grid-voltage.

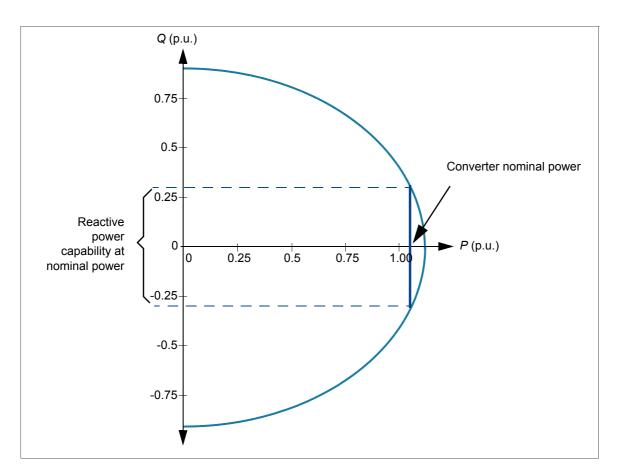
The primary function of the grid-side converter is to control the power transfer between the network and the DC link. The control system can be divided into two sections:

- Flux controller and torque controller. The flux controller is controlling the length of the flux vector (flux vector is an integral of the voltage vector) that has influence on the reactive power.
- Torque controller controls the power flow from/to the electrical power network (basically the power transfer angle is controlled). The DC voltage controller gives the reference to the torque controller.

Symbol	Description
<i>U</i> ₁	grid voltage
<i>U</i> ₂	grid-side converter voltage
ω	angular frequency of the grid
X	reactance between U_1 and U_2
Ρ	active power
Q	reactive power
1	grid-side converter current
δ	angle between U_2 and I

Power transfer equation between the network and the grid-side converter is following:

$$P = \frac{U_1 U_2}{X} \sin \delta$$


26 System description

Reactive power is transferred only if there is an amplitude difference between the two voltage vectors. Reactive power transfer equation is following:

$$Q = \frac{U_1^2}{X} - \frac{U_1 U_2}{X} \cos \delta$$

For the desirable magnitude and direction of the power and reactive power flow, the length of the converter voltage vector and its phase angle (with respect to the grid voltage vector) must be controlled. The DC voltage is controlled by keeping the power (energy) balance between the grid and grid-side converter in the DC link constant. The sign of the angle determines the direction of the power flow. The output AC voltage is controlled by setting the length of the flux reference to correspond to the desired output voltage level producing cosfii = 1.0.

The grid-side converter can control reactive power independently of speed and active power. The maximum reactive current capacity is approximately 80% of the active current capacity and depends on the rating of the grid-side converter and on the electrical power network voltage. An example curve of reactive power capability as a function of the active power is shown below.

Overview of converter interfaces

The WTC controls the converter using its main control word. For more information, refer to section *ABB Drives communication profile* on page *90*.

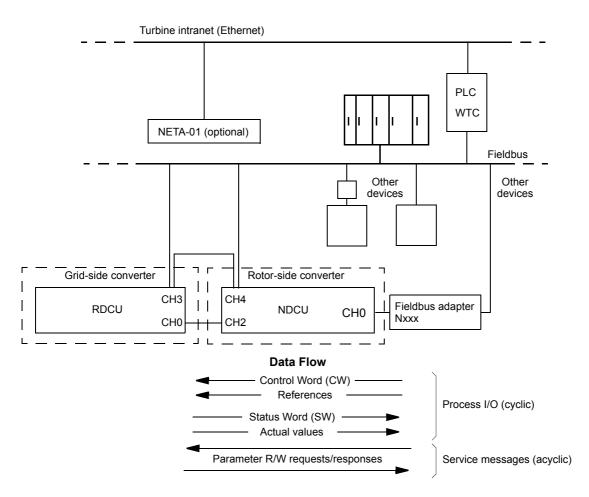
The start-up procedure of the converter is recommended to be proceeded with the DriveWindow PC tool. For information on using the DriveWindow, see *DriveWindow 2 user's manual* [3BFE64560981 (English)].

With optional Ethernet adapter module (NETA), the user can remotely

- monitor the converter
 - read and adjust converter parameter values
 - · read status information and actual values from the converter
 - set up and monitor (numerically or graphically) the data logger and save its content to a file
 - read and clear the contents of the fault log and save it to a file
- control the converter (not recommended remotely)
 - give control commands (Start, Stop, Run enable, etc.) to the converter
 - feed a generator speed or torque reference to the converter
 - reset converter faults.

For more information, see *NETA-01 Ethernet adapter module user's manual* [3AFE64605062 (English)].

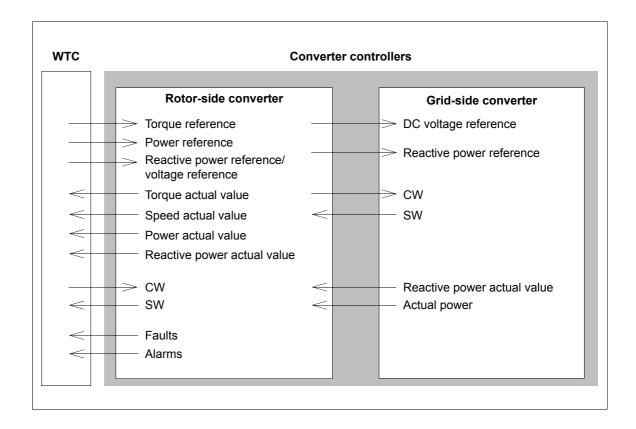
Converter control


General

The WTC operates as the overriding controller of the converter. It is connected to the NDCU control unit of the rotor-side converter via fieldbus. The rotor-side converter control program controls the rotor-side power modules according to the references and commands sent by the overriding controller.

PLC interface

The converter can be connected to an external control system – usually a PLC controller – via a fieldbus adapter connected to channel CH0 of the NDCU control unit.


The following diagram shows the PLC interface:

The converter can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources, eg, digital and analog inputs.

Fieldbus control

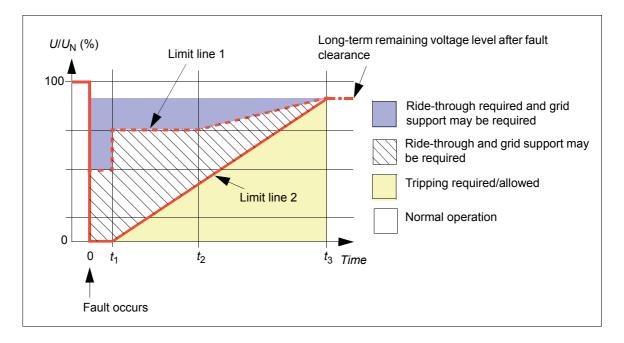
Fieldbus control of the grid-side converter is performed via the rotor-side converter NDCU control unit. The principle of reference and actual value chains in the control are shown in the diagram below. For details, see *ACS800-67(LC)* doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)].

Grid codes

Grid codes specify static and dynamic requirements to be fulfilled by a wind power installation. Static requirements mainly determine the voltage control and power control during normal operation. Most of the recent grid codes include also power quality requirements such as harmonics distortion limits, flicker etc. Dynamic requirements define the dynamic behavior of a wind turbine or wind farm under grid disturbance. One of the most important dynamic requirements is grid fault ride-through capability of the wind power generator. Grid fault ride-through means that instead of disconnection, the wind generators have to stay connected to the electrical power network for a certain period. Grid fault ride-through requirements define:

- how long a grid fault (eg, voltage dip/sag or swell) can last
- how to operate under a balanced (symmetrical) grid fault
- how to operate under an unbalanced (unsymmetrical) grid fault.

The power train concept can be used to find the optimal solution when balancing the connection requirements and costs of installation. The selection of electrical power train components (a pitch system, generator, frequency converter and transformer) has effect on the capability of an individual turbine to comply with the grid code requirements.


Although the converter has an important role in enabling the wind turbine to fulfill the grid code requirements, it is highly dependent on how the whole wind turbine system and its process is functioning (the wind turbine controller, pitch system, UPS etc.). The turbine manufacturer is responsible for fulfilling the requirements of the transmission or distribution system operator.

Example of grid code regulations in different countries

• REE P.O.12.3	RED ELÉCTRICA DE ESPAÑA P.O.12.3 Fault ride-through capabilities and reactive power/voltage control during faults in wind power installations
 National Grid Electricity Transmission plc 	The Grid Code, Issue 4, Revision 4, 18th October 2010
• Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW	Rev. 4.1. 30.9.2010
 National Grid Code (China) 	Technical Rule for Connecting Wind farm into Power Network, July 2009
Transmissioncode 2007	Netz- und Systemregeln der deutschenÜbertragungsnetzbetreiber, August 2007
transpower stromübertragungs gmbh	Grid Code for high and extra high voltage, 1st April 2009
transpower stromübertragungs gmbh	Requirements for Offshore Grid Connections in the transpower Grid, 30th April 2010
 50Hertz Transmission GmbH 	Netzanschluss- und Netzzugangsregeln, May 2008
System Service Ordinance	Ordinance on System Services by Wind Energy Plants (System Service Ordinance – SDLWindV)
• BDEW	Technische Richtlinie Erzeugungsanlagen am Mittelspannungsnetz, Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz, June 2008
• TR3	Technische Richtlinienfür Erzeugungseinheiten und –anlagen Teil 3 Bestimmung der Elektrischen Eigenschaften von Erzeugungseinheiten am Mittel-, Hoch- und Höchstspannungsnetz;
• 111 FERC 61,252	United States of America, Federal Energy Regulatory Commission, 18 CFR part 35. 2005
Guida Tecnica	Sistemi di controllo e protezione delle centrali eoliche [prescrizioni tecniche per la connessione]

Example limit curves

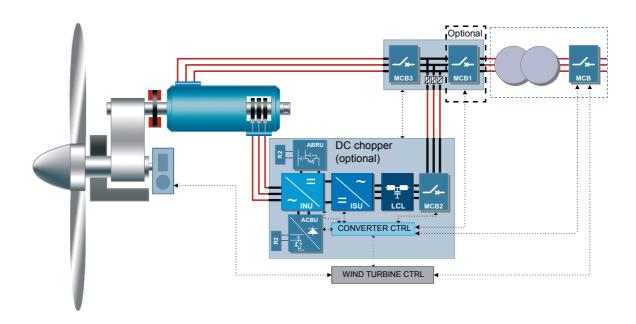
According to this example, electrical power network failure (eg, voltage dip/sag) may not cause instability above the limit line 1 or disconnection of the converter from the grid. The limit curves for voltage at the grid connection in case of a fault in the grid are shown below. U denotes the remaining grid voltage and U_N the converter nominal voltage.

Description of parameter settings

The parameter settings of the grid fault ride-through function are described in section *Grid support* on page *34*.

Grid fault ride-trough capability

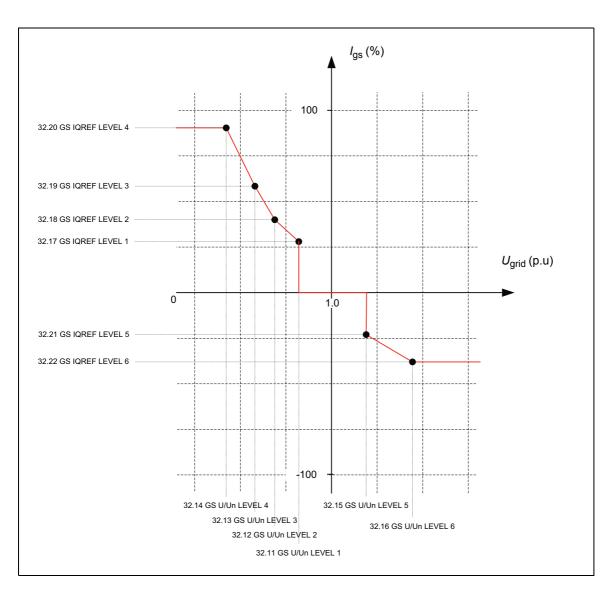
Although the advantage of doubly-fed concept is that the size of the wind turbine converter is significantly smaller than full-power converter, the drawback is that the rotor-side converter is a vulnerable part of the system. It has a restricted overcurrent limit and it needs special attention especially during faults in the grid. When faults occur and cause eg, voltage dips or sags, the magnetic flux in the generator can not change instantaneously. As a result sudden change in the stator, supply voltage is followed by a large change in the generator currents. The converter responds to the change of rotor currents so that the rotor currents are maintained as required by the rotor-side converter control.


Since the output voltages and currents of the rotor-side converter are limited, the rotorside converter may not be able to maintain the rotor currents within given limits during severe grid faults and thus it must be protected. Wind turbine converter can be equipped with hardware-based protection device, a crowbar. The crowbar is used to protect the converter in case of unexpected electrical power network failure. There are two types of crowbars, a passive crowbar that does not allow the grid fault ride-through function, and an active crowbar that allows to operate through pre-determined electrical power network failure without tripping (grid fault ride-through operation).

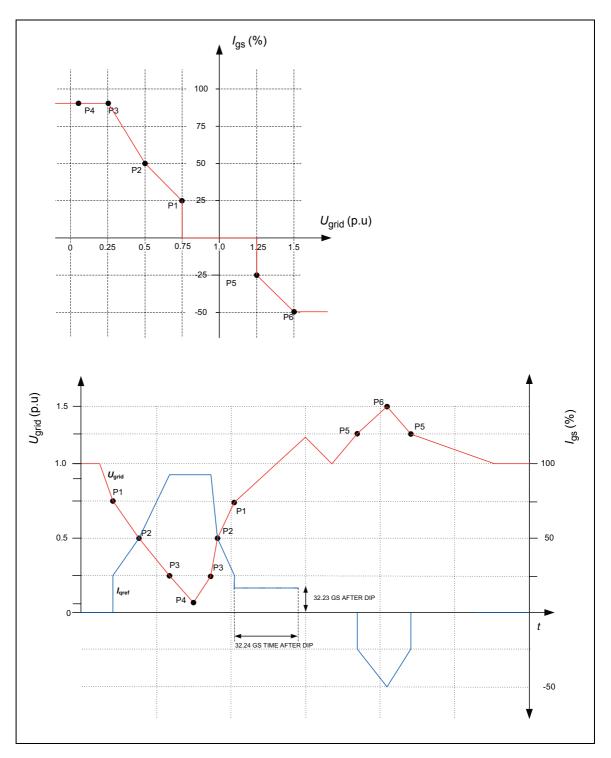
The crowbar consists of the crowbar unit and a high power resistor. The active crowbar is controlled by the rotor-side converter control firmware, and in case of failure, it can protect the converter independently. The crowbar is triggered if DC link voltage is too high or alternatively if the rotor current is too high.

Grid codes typically require that the wind turbine must remain connected to the grid under different kinds of grid failure events (eg, voltage dip/sag, short interruption, swell etc). It is very common that the wind turbine

- · has to stay connected to the power system for a certain period
- may not take power from the power system
- produces capacitive reactive current.


Wind turbine converter can be equipped with a DC chopper for DC link power dissipation. The DC chopper may be needed if grid fault ride-through or high swell threshold is required. The DC chopper is connected to the DC link and it operates independently always when DC link voltage rises above its triggering level. A diagram of the wind turbine system with the DC chopper is shown below.

With the crowbar and the DC chopper, the wind turbine is capable of handling fault situations like rotor overspeed, short interruptions, voltage dips/sags and swells. With these energy absorbers, the converter is capable of meeting even the most strictest grid fault ride-through requirements in accordance with international grid codes.

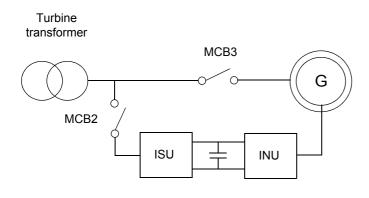

Grid support

In the grid support function, the grid is supported by feeding reactive current to it. The reactive current reference is defined as a function of the grid voltage. Six different voltage levels can be defined. Examples of setting the grid support parameters are shown in the diagrams below. For further information, see *ACS800-67(LC) doubly-fed induction generator control program firmware manual* [3AUA0000071689 (English)].

Grid support areas

Grid support example

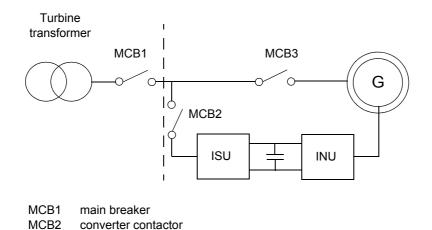
Stator circuit connection to grid


The converter can control both breaker and contactor for connecting the generator stator to the grid. The main difference between these configurations is that if the stator circuit is equipped with a breaker, it allows disconnecting the stator from the grid even with a high stator current. When the stator circuit is equipped with a contactor, disconnecting the stator from the grid must be handled selectively. If the stator contactor is opened under high current, it may be damaged.

Selective disconnection from the grid is handled so that any time the stator contactor is commanded to open, instantaneous stator current is compared to the given limit. If stator current is below the limit, the stator contactor is opened. Conversely, if stator current is above the limit, the stator contactor is kept closed and the grid-side breaker (MCB1, optional) is opened instead; the stator contactor is opened after a certain delay.

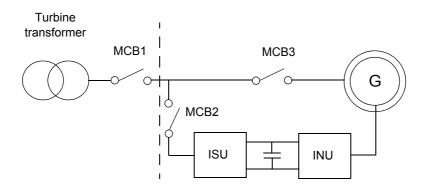
The hardware connection type for the grid connection is defined by parameter 16.20 GRID CONNECT MODE. For the time schemes of the grid connection signals and operation of digital inputs and outputs, see *ACS800-67(LC)* doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)]. The differences between the configurations are presented below.

Stator breaker only (par. 16.20 GRID CONNECT MODE set to MCB3)


The configuration below is used when the stator is connected to the grid by the breaker (MCB3) only.

MCB2 converter contactor MCB3 stator breaker

Main circuit breaker (par. 16.20 GRID CONNECT MODE set to MCB1+MCB3/A)


The configuration below is used when the concept contains an optional grid-side breaker (MCB1).

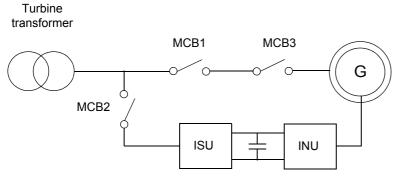
Main circuit breaker (par. 16.20 GRID CONNECT MODE set to

MCB1+MCB3/B)

The configuration below is used when the concept contains an optional grid-side breaker (MCB1). DO/DI connections differ from selection MCB1+MCB3/A.

MCB1	main breaker
MCB2	converter contactor

MCB3 stator contactor


MCB3

stator contactor

38 System description

Stator contactor (par. 16.20 GRID CONNECT MODE set to MCB1+MCB3/C)

The configuration below is used when MCB1 and MCB3 are connected in series.

MCB1 stator breaker MCB2 converter contactor

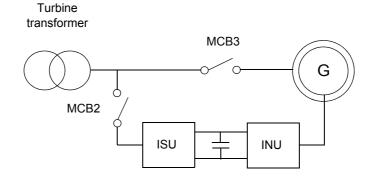
MCB3 stator contactor

The breaking device type for the grid connection is defined by parameter 20.27 CONT OPEN CUR.

- 0 A = main circuit breaker or medium voltage circuit breaker MCB3 is used for disconnecting stator from grid
- > 0 A = contactor MCB3 is used for disconnecting stator from grid.

When parameter value [> 0 A] is selected, the converter can be disconnected from the grid in two ways depending on a parameter setting:

- If measured current 06.29 STATOR IS NO FILT is below the parameter value, the converter uses the stator contactor only.
- If measured current 06.29 STATOR IS NO FILT is above the parameter value, the converter first opens the breaker and, after a short time, the stator contactor.


The parameter value is compared to unfiltered stator rms value. Since the unfiltered value always contains a certain amount of noise, it is recommended to set the parameter to a value of contactor nominal current +15%. See the delivery specific circuit diagrams.

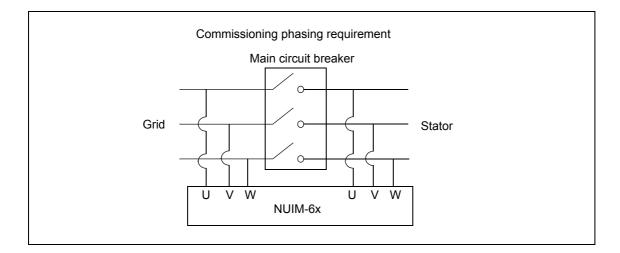
Settings

Parameter 20.27 CONT OPEN CUR.

In case of one contactor, the value for parameter 20.27 CONT OPEN CUR is the nominal current of the contactor.

Grid connection procedure

A typical procedure required to connect the wind generator to the grid is as follows:


- The system is operational if the rotor speed is in the predetermined normal operating range (eg, from 70% to 130% of the synchronous speed).
- MCB2 is closed to start the converter and to establish the DC link for the rotor-side converter. MCB3 is still open.
- The rotor-side converter measures the grid voltage (input side of MCB3) and the stator voltage.
- The rotor-side converter shifts to synchronization mode. The rotor-side converter magnetizes the rotor windings so that the induced stator voltage is synchronized with the grid voltage (same frequency and magnitude as for the grid voltage).
- MCB3 is closed and the controller shifts to the torque control mode. Now it is ready to
 accept the user's torque and power factor (pf) commands. The net power generated to
 the grid (from the stator port + the rotor port) is relative to the product of the torque and
 the mechanical speed.

The normal shut-down procedure is as follows:

- The system is assumed to be in the torque control mode and the rotor speed in the predetermined normal operating range (eg, from 70% to 130% of the synchronous speed).
- After receiving the shut-down command, converter program sets the rotor-side converter torque reference to zero and power factor command to 1. (Under these conditions the stator current is zero.)
- MCB3 is opened when the converter detects 0 voltage and 0 current across it.
- The rotor-side converter and then the grid-side converter modulation is stopped.

Phasing checks executed at start-up

During the encoder calibration and voltage synchronization, the software ensures that the grid, encoder, stator and rotor phasings are correct. The U-phase (and V- and W-phase) of the grid is connect to the U-phase of the stator via main circuit breaker.

The following checks are automatically executed at start-up in the order in which they are listed:

Grid phasing

Grid flux is a measured quantity. The angle of the flux is calculated. The angle is derivated and filtered. As a result, angular speed of the grid flux is received. If the speed is negative, the grid phasing is incorrect.

Encoder phasing

The generator actual speed is received from the encoder speed feedback. If the direction is negative, the encoder phasing is wrong.

Note: This check is executed only if RUN command has been issued.

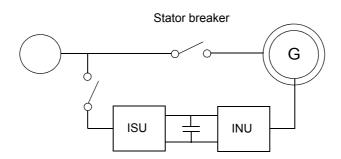
Stator phasing

During normal operation, the grid flux and the stator flux rotate clockwise at the grid frequency. If the sum of the rotor flux speed and slip does not rotate at the frequency of the stator flux, the stator phasing is incorrect.

Note: The rotation speed of the rotor flux is independent of whether the rotor phasing is correct or not.

Rotor phasing

The dot product between the two flux vectors is approximately +1 when the rotor phasing is correct and approximately -1 when the rotor phasing is incorrect.


Start-up with low voltage stator 41

Start-up with low voltage stator

What this chapter contains

This chapter describes the basic start-up procedure of the wind turbine converter equipped with doubly-fed induction generator control program.

Note: Grid-side converters are delivered with one of the following grid voltage measurement methods:

- The grid-side converter receives the voltage measurement data from the rotor-side converter. (The rotor-side converter is only fitted with an NUIM board.)
- The grid-side converter is fitted with a dedicated measurement board, NAMU / BAMU.

Each method requires a different grid-side converter control program version. The first method requires version IXXR7260 with Adaptive program version IZXX0169.AP (or later versions) while the second requires version IWXR7300 with Adaptive program version 00595631_C.AP (or later versions).

The grid-side converter parameter settings in the start-up procedure below differ depending on which grid voltage measurement method is used.

How to start-up the converter

In the start-up procedure presented here, the converter is operated locally from DriveWindow PC tool. For instruction on how to operate DriveWindow PC tool, see DriveWindow Online Help or DriveWindow 2 user's manual [3AFE64560981 (English)].

The start-up mainly uses rotor-side converter parameters. When grid-side converter parameters are needed, a reference to the grid-side converter parameter list in *ACS800-67(LC)* doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)] is given.

After the first start-up, the converter can be powered up without using these start-up functions. The start-up procedure can be repeated later if start-up data needs to be changed.

WARNING! The generator may not be connected to the grid when the rotor is not rotating. The rotor speed must be in the operational speed area (normally 70...130% of the generator nominal speed). Otherwise grid connection is not

allowed by the converter control program.

Note: For testing purposes the rotor-side converter can be started without closing the stator breaker at zero speed. Note that the control program is not able to execute the commissioning check routines at zero speed. The grid-side converter can be tested even though the generator is not rotating.

Before you start, ensure you have the generator data sheet on hand.

S	Safety		
The start-up may only be carried out by a qualified electrician. The safety instructions must be followed during the start-up procedure. See ACS800-67 wind turbine converters for asynchronous slip ring generators hardware manual [3AFE68392454 (English)].			
	Check the installation. See the installation checklist in the converter hard	dware manual.	
F	Power-up		
	Connect fibre optic cables temporarily between channel CH3 of the rotor-side converter NDCU unit and the DDCS Communication (RUSB-02) card or PCMCIA card. If an active crowbar is in use (optional), the crowbar test requires communication with the NDCU unit of the rotor-side converter and RDCU unit of the grid-side converter: Connect the fibre optic cables in a ring connection between channel CH3 of the NDCU unit and channel CH3 of the RMIO board and the DDCS Communication (RUSB-02) card or PCMCIA card. When a PCMCIA card is used, follow the instructions included in the DriveWindow kit.		
	Apply main power.		
	Start the DriveWindow program.		
	Switch the rotor-side converter to local control mode.		
N	Manual start-up data entering		
	Upload the parameter and signal lists.		

Enter the generator data from the generator data sheet. For more information, see section <i>Generator data</i> on page <i>81</i> .	
generator nominal voltage (U1)	99.02 MOTOR NOM VOLTAGE
generator nominal stator-side current (I1)	99.03 MOTOR NOM CURRENT
generator nominal frequency	99.04 MOTOR NOM FREQ
generator nominal speed	99.05 MOTOR NOM SPEED
 generator nominal power Note: Generator values must be given at 50 Hz (60 Hz). Calculate generator nominal power with the following equation: 	99.06 MOTOR NOM POWER
99.06 MOTOR NOM POWER = 99.05 MOTOR NOM SPEED · Wind turbine nom. speed Wind turbine nom. speed	nom. power
generator power factor (cos)	99.12 MOTOR NOM COSFII
generator synchronous speed	99.14 MOTOR SYNC SPEED
open-circuit voltage of the rotor (U2)	99.15 MOTOR OPEN CKT V
- maximum allowed long time rotor current limit (for reactive power supervision) ${\it I}_{\rm M}$	99.16 MOTOR NOM IM
 resistances and reactances of the generator equivalent circuit. 	99.21 Rs
Mutual inductance 99.24 X_m is calculated with the following equation:	99.22 XIS
-	99.23 X2S
는·U1	99.24 XM
$X_m = \frac{\frac{E}{U} \cdot U1}{\sqrt{3} \cdot I_m}$	99.25 Rr
$\sqrt{3} \cdot I_m$	
E = stator voltage without losses (on the generator data sheet) U = stator voltage (on the generator name plate).	
The rotor resistance 99.25 R_r (R2PH on the ABB generator	
equivalent circuit data) reduced to the stator reference frame is calculated with the following equation:	
$R_r = \frac{R2PH}{\left(\frac{U2}{U1}\right)^2}$	
Note: Some generator manufacturers give equivalent circuit data for delta connection. In that case the given reactance values must be divided by three.	
• maximum measurable stator flux. See section <i>Stator current and voltage measurement</i> on page 79.	99.27 MAX MEAS FLUX
Define the maximum measurable stator current (depends on the used current transformer). See section <i>Stator current and voltage measurement</i> on page 79.	99.28 MAX MEAS IS

 $\langle \rangle$

44 Start-up with low voltage stator

Enter the number of encoder pulses.	50.04 PULSE NR
Select the communication profile used by the converter. For more information see section <i>ABB Drives communication profile</i> on page <i>90</i> .	16.11 COMM PROFILE
Set parameter limits in group 20 LIMITS according to the process requirements.	20.05 USER POS TORQ LIM
20.05 USER POS TORQ LIM defines the motoring torque limit 20.06 USER NEG TORQ LIM defines the generating torque limit.	20.06 USER NEG TORQ LIM
	20.21 SWITCH ON SPEED
	20.22 SWITCH OFF SPEED
Select the reactive power reference type (PERCENT/KVAR/PHII/COSPHII).	23.04 REACT POW REF SEL
Set the stator overcurrent trip limit.	30.04 STATOR CURR
During commissioning when the converter runs in local control mode without torque references, set parameter value to approximately 500 A. After commissioning set parameter value to 0 A.	TRIP
Set the over/underspeed limits.	30.09 OVERSPEED LIMIT 30.10 UNDERSPEED
	LIMIT
Activate the external communication by setting parameter 98.02 COMM MODULE to FBA DSET 10.	98.02 COMM MODULE
Set the fieldbus adapter data according to the used external control system.	51 MASTER ADAPTER
Note: The configuration parameters are not visible if the module is not connected or activated in the control program. See appropriate adapter hardware manual.	
Activate the fieldbus adapter supervision toggle bit (if needed).	70.25 TOGGLE BIT SEL 70.26 TOGGLE ADDRESS SEL
Define the current limit and breaking device type for the grid connection between stator and grid.	20.27 CONT OPEN CUR
0 A = air circuit breaker used for disconnecting stator from grid.	
> 0 A = contactor is used for disconnecting stator from grid.	
If stator current exceeds given value at the time disconnection is requested, then the wind turbine converter first opens the breaker in front of the contactor, then the contactor shortly later.	
Check that the breaker/contactor configuration of the converter is set correctly according to the delivery. For configurations available and corresponding parameter settings, see section <i>Stator circuit connection to grid</i> on page <i>36</i> .	16.20 GRID CONNECT MODE
If the parameter 16.20 GRID CONNECT MODE selection is MCB1+MCB3/C: To set certain breaker related fault logger texts correctly, set parameter 99.01 LANGUAGE to DEUTSCH.	99.01 LANGUAGE

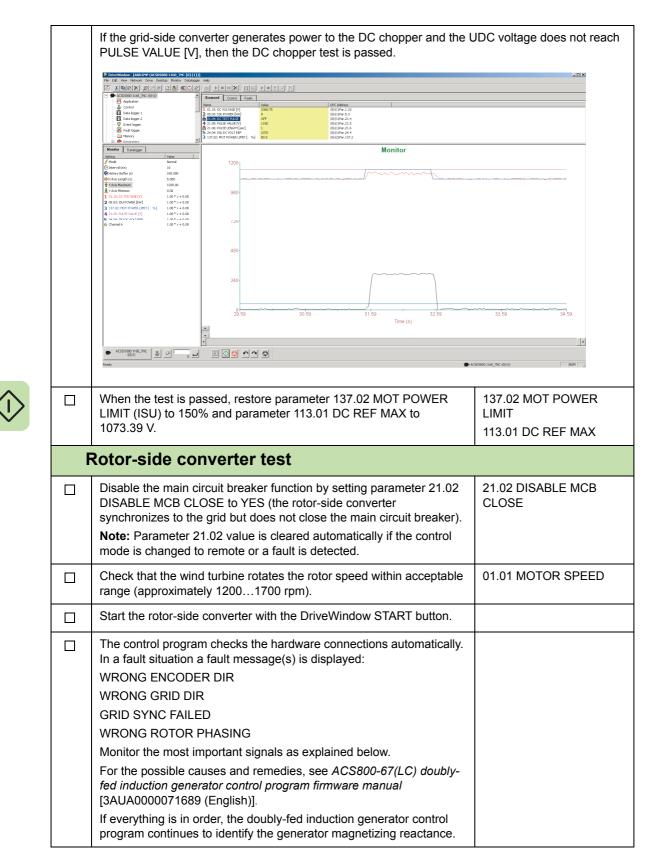
٦	Fime setting	
	 Set rotor-side converter 16.01 PARAM LOCK to OFF. Set the date and time as follows: Set parameter 95.07 RTC MODE value to SET. Check/adjust the date and time by parameters 95.0195.06. Set parameter 95.07 RTC MODE value to SHOW. 	16.01 PARAM LOCK 95.07 RTC MODE 95.0195.06
[Digital inputs	
	Check that all digital inputs are connected properly.	01.15 DI STATUS
(Grid-side converter and crowbar test	
	nunication between the grid-side converter and the rotor-side converter is ide converter unit via the rotor-side converter unit parameters.	s checked by controlling the
	Set parameter 21.01 ISU LOCAL CTR WORD to 9 (hex), ie, 1001 (bin): Grid-side converter starts charging the DC capacitors, closes the main contactor and starts modulating.	21.01 ISU LOCAL CTR WORD
	Check the grid-side converter status. Note : Only the three least significant bits are relevant in this case. 231H (1000110 001 bin) before the grid-side converter is started 737H (11100110 111 bin) when the grid-side converter is running 238H (1000111 000 bin) when the grid-side converter has tripped on a fault.	05.10 ISU STATUS WORD
	Check that the DC link is charged.	01.10 DC VOLTAGE
	Check that the Voltage and Current Measurement Unit NUIM-6x functions, ie, the grid frequency is positive and the grid voltage is correct.	01.05 NET FREQUENCY 01.11 MAINS VOLTAGE
	Stop the grid-side converter by setting parameter 21.01 ISU LOCAL CTR WORD to 0 (hex).	21.01 ISU LOCAL CTR WORD
	Check the functioning of the crowbar by starting and stopping the grid-side converter. (Parameter 21.01 ISU LOCAL CTR WORD setting 9 (hex) = START and 0 (hex) = STOP) When DC voltage is 0 V, 01.15 DI STATUS bit 4 value must be 0 (ie, crowbar inactive). 01.15 DI STATUS = 1303 (hex) When DC voltage exceeds 100 V, 01.15 DI STATUS bit 4 value must be 1 (ie, crowbar active). 01.15 DI STATUS = 1713 (hex)	01.15 DI STATUS
If the	converter is NOT equipped with an active crowbar, continue to the next s	ection.
	Activate the active crowbar by setting rotor-side converter parameter 31.01 CROWBAR HW TYPE according to the type of active crowbar in use. Note: If the converter is equipped with an active crowbar, it must always be activated by parameter 31.01 even when low voltage ride through (LVRT) and / or grid support is not used.	31.01 CROWBAR HW TYPE
	Start the grid-side converter by setting parameter 21.01 ISU LOCAL CTR WORD to 9 (hex).	21.01 ISU LOCAL CTR WORD
	Check the communication between the rotor-side converter and the active crowbar: The communication is OK if the temperature of the crowbar is about 2540 °C and the converter does not trip for crowbar communication time-out.	06.13 CB IGBT TEMP

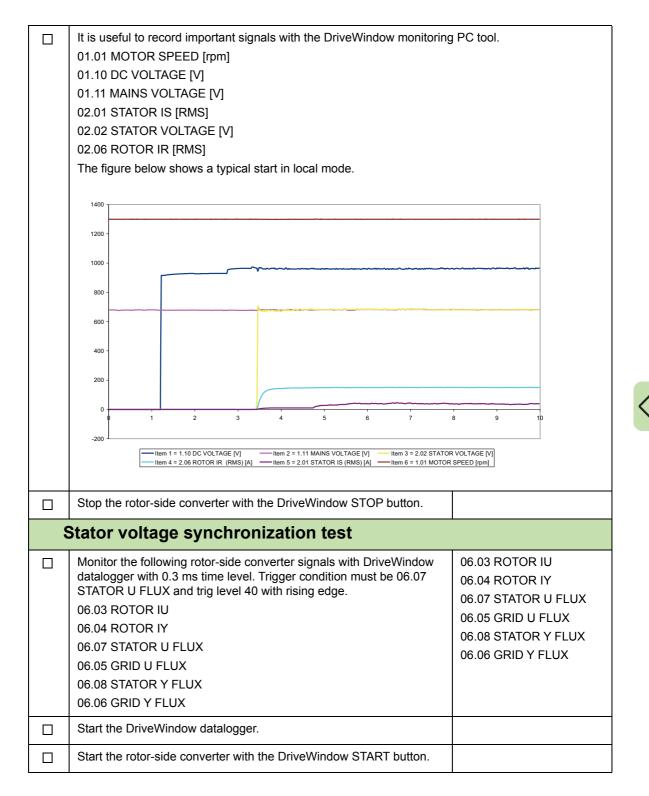
 $\langle \rangle$

46 Start-up with low voltage stator

NUIM board in use (grid-side converter control program IXXR72xx):	
• Enable the grid-side converter parameter lock by setting parameter 16.03 PASS CODE to 2303. Parameter groups 100202 become visible when the parameter lock is enabled.	16.03 PASS CODE
NAMU / BAMU board in use (grid-side converter control program IWXR74xx):	
 Parameter groups needed are visible automatically. 	
Check grid-side converter supply voltage measurement:	
NUIM board in use (grid-side converter control program IXXR72xx):	See grid-side converter parameter list:
 Set grid-side converter parameter 138.04 CASCADE MEAS ENA to ON and 	138.04 CASCADE MEAS ENA
Set grid-side converter parameter 138.01 NAMU BOARD ENABLE to OFF.	138.01 NAMU BOARD ENABLE
NAMU / BAMU board in use (grid-side converter control program IWXR74xx):	
 Set grid-side converter parameter 40.04 PHASE MEAS ENA to OFF and 	40.04 PHASE MEAS ENA
 Set grid-side converter parameter 40.02 NAMU BOARD ENABLE to ON if NAMU board is in use. 	40.02 NAMU BOARD ENABLE
 Set grid-side converter parameter 40.03 BAMU BOARD ENABLE to ON if BAMU board is in use. 	
NUIM board in use (grid-side converter control program IXXR72xx):	01.11 MAINS VOLTAGE
Check grid-side converter parameter 01.11 MAINS VOLTAGE value (= mains voltage received from the rotor-side converter). If the voltage level is correct, communication between rotor-side and grid-side converters is OK.	
NAMU / BAMU board in use (grid-side converter control program IWXR74xx):	
Check grid-side converter parameter 01.11 MAINS VOLTAGE value (= mains voltage received from the rotor-side converter). If the voltage level is correct, measurement is OK.	
	 IXXR72xx): Enable the grid-side converter parameter lock by setting parameter 16.03 PASS CODE to 2303. Parameter groups 100202 become visible when the parameter lock is enabled. NAMU / BAMU board in use (grid-side converter control program IWXR74xx): Parameter groups needed are visible automatically. Check grid-side converter supply voltage measurement: NUIM board in use (grid-side converter control program IXXR72xx): Set grid-side converter parameter 138.04 CASCADE MEAS ENA to ON and Set grid-side converter parameter 138.01 NAMU BOARD ENABLE to OFF. NAMU / BAMU board in use (grid-side converter control program IWXR74xx): Set grid-side converter parameter 40.04 PHASE MEAS ENA to OFF and Set grid-side converter parameter 40.02 NAMU BOARD ENABLE to OFF and Set grid-side converter parameter 40.03 BAMU BOARD ENABLE to ON if NAMU board is in use. Set grid-side converter parameter 40.03 BAMU BOARD ENABLE to ON if BAMU board is in use. MUIM board in use (grid-side converter control program IXXR72xx): Check grid-side converter parameter 01.11 MAINS VOLTAGE value (= mains voltage received from the rotor-side converter). If the voltage level is correct, communication between rotor-side and grid-side converters is OK. NAMU / BAMU board in use (grid-side converter control program IWXR74xx):

Check grid-side converter mains voltage measurement phase sequence:	See grid-side converter parameter list:
Monitor the following grid-side converter signals with DriveWindow	16.03 PASS CODE
datalogger with 1 ms time level, when grid-side converter is started:	138.02 FLUX X NET ACT
NUIM board in use (grid-side converter control program IXXR72xx):	138.03 FLUX Y NET ACT
138.02 FLUX X NET ACT	161.04 FLUX X ACT
138.03 FLUX Y NET ACT	161.05 FLUX Y ACT
161.04 FLUX X ACT 161.05 FLUX Y ACT	
Start DriveWindow datalogger and trigger manually. Upload	
datalogger information:	
If parameter 138.02 FLUX X NET ACT and 161.04 FLUX X ACT	
signals are in phase and parameter 138.03 FLUX Y NET ACT and 161.05 FLUX Y ACT signals are in phase, the flux measurement is	
OK.	
NAMU / BAMU board in use (grid-side converter control program	02.22 FLUX X NET ACT
IWXR74xx):	02.23 FLUX Y NET ACT
02.22 FLUX X NET ACT	02.20 FLUX X ACT
02.23 FLUX Y NET ACT 02.20 FLUX X ACT	02.21 FLUX Y ACT
02.20 FLUX X ACT	
Start DriveWindow datalogger and trigger manually. Upload datalogger information:	
If parameter 02.22 FLUX X NET ACT and 02.20 FLUX X ACT signals	
are in phase and parameter 02.23 FLUX Y NET ACT and 02.21	
FLUX Y ACT signals are in phase, the flux measurement is OK. Note: If this test fails, grid-side converter grid voltage cabling must be	
checked. See the converter hardware manual.	
Check the grid-side converter parameters. See the grid-side converter parameter list in ACS800-67(LC) doubly-fed induction	
generator control program firmware manual [3AUA0000071689	
(English)].	
Stop the grid-side converter by setting parameter 21.01 ISU LOCAL	21.01 ISU LOCAL CTR
CTR WORD to 0.	WORD
Check the grid-side converter parameters. See the grid-side converter parameter list in ACS800-67(LC) doubly-fed induction	
generator control program firmware manual [3AUA0000071689	
(English)].	
Disable the main circuit breaker function by setting parameter 21.02	21.02 DISABLE MCB
DISABLE MCB CLOSE to YES (the rotor-side converter	CLOSE
 synchronizes to the grid but does not close the main circuit breaker).	
Start the converter with zero speed with the DriveWindow START button.	06.11 CB BRIDGE VOLTAGE
Check crowbar measurements after the DC link has been charged:	06.12 CB IGBT VOLTAGE
Measurements are OK, if parameter 06.11 CB BRIDGE VOLTAGE	06.13 CB IGBT TEMP
and 06.12 CB IGBT VOLTAGE values are higher than the DC link voltage (01.10 DC VOLTAGE) and parameter 06.13 CB IGBT TEMP	
value is approximately 2540 °C.	
Stop the converter with the DriveWindow STOP button.	

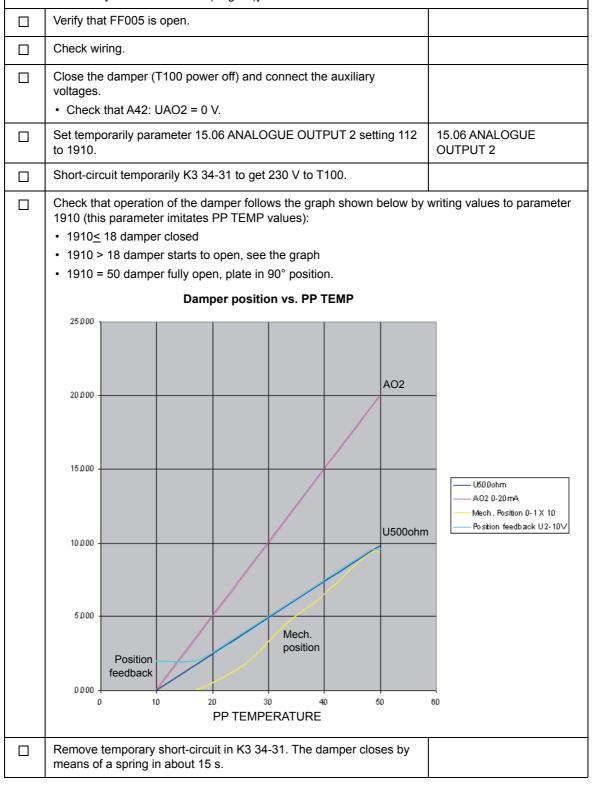

 $\langle \mathbf{I} \rangle$


48 Start-up with low voltage stator

	Test active crowbar functioning with manual trigger: Select parameter 06.11 CB BRIDGE VOLTAGE and 06.12 CB IGBT VOLTAGE signals to be monitored with DriveWindow datalogger 2. Use the following DriveWindow settings: • Interval = 2 • Trigg Conditions = Level, Falling edge • Trig Variable = 06.11 CB BRIDGE VOLTAGE • Trigg Level = 700 Start the rotor-side converter in local mode with the DriveWindow START button. (Rotor does not need to rotate.) Start the DriveWindow datalogger after the DC link has been charged. Set parameter 21.08 MANUAL TRIGGER first to OFF and then to ON. Note: 16.01 PARAM LOCK must be set OFF in order to accept command.	06.11 CB BRIDGE VOLTAGE 06.12 CB IGBT VOLTAGE 21.08 MANUAL TRIGGER
	Upload datalogger.	
	If the measured diode bridge voltage (06.11 CB BRIDGE VOLTAGE) drops for a short time when triggered, the active crowbar functions.	
	The following figure shows the active crowbar voltages when manual tr	iggering is used.
	Montor Datalogger Montor Value Status Filed, Initialized Trigged by Level Trig Variable 06.12: CB IGBT VOLTAGE Trig Variable 0.150 Y Axis Length (s) 0.150 Y Axis Minimum 0.00 I 06.12: CB IGBT VOLTAGE [V] 1.00 * x + 0.00 Channel 3 1.00 * x + 0.00 Channel 4 1.00 * x + 0.00 Channel 5 1.00 * x + 0.00 Channel 6 1.00 * x + 0.00 Channel 6 1.00 * x + 0.00 Stop the converter with the DriveWindow STOP button. Set the Low Voltage Ride Through function and Grid Support function parameters. Values must be set according to the selected grid code. See ACS800-67(LC) doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)].	0.0140 0.0440 0.0740
C	Grid-side converter and DC chopper test	
If the c	converter is NOT equipped with a DC chopper, continue to the next section	on.
	 NUIM board in use (grid-side converter control program IXXR72xx): Set parameter 58.01 ADAPT PROG CMD to STOP. (grid-side converter par.) 	58.01 ADAPT PROG CMD
	 NAMU / BAMU board in use (grid-side converter control program IWXR74xx): Set parameter 58.01 ADAPT PROG CMD to STOP. (grid-side converter par.) 	58.01 ADAPT PROG CMD

 $\langle \rangle$

	Set parameter 30.13 DI7 EXT EVENT to NO. (grid-side converter par.)	30.13 DI7 EXT EVENT
Test that the DC chopper FAULT signal trips the converter.		
	Check that 690 V is disconnected and DC voltage is 0 V.	
	Check ABRC-65 board settings: S1 = 2 S2 = 7 S3 = 7 S4:1 = DOWN S4:2 = UP S4:3 = UP S4:3 = UP S4:4 = UP S5 = 7 S6 = 0 Remove jumper X1. 1 and 2.	
	Connect 690 V to converter.	
	Start the converter in local mode in zero speed. The converter must trip and the reason can be read from rotor-side converter fault logger: ISU TRIPPED ISU BR CHOPPER	
	Check that 690 V is disconnected and DC voltage is 0 V.	
	Reconnect jumper X1.1 and 2.	
	Connect 690 V to converter.	
The D	C chopper function can be tested by feeding a short UDC voltage pulse to	o RMIO (grid-side converter).
	Set RMIO (grid-side converter) power limit: 137.02 MOT POWER LIMIT to 50%.	137.02 MOT POWER LIMIT
	Set RMIO (grid-side converter) DC voltage ref limit 113.01 DC REF MAX to 1150 V.	113.01 DC REF MAX
	It is useful to record the following signals with the DriveWindow monitoring PC tool. 01.10 DC VOLTAGE (rotor-side converter par.) 05.03 ISU POWER (rotor-side converter par.) 137.02 MOT POWER LIMIT (grid-side converter par.) 21.05 PULSE VALUE [V] (rotor-side converter par.) 24.04 ISU DC VOLT REF (rotor-side converter par.)	
	Set parameter 21.06 PULSE LENGTH [sec] to eg, 0.5 sec. (rotor-side converter par.)	21.06 PULSE LENGTH [sec]
	Start DriveWindow monitoring PC tool. Set parameter 21.04 DC TEST PULSE to ON (rotor-side converter par.) (returns automatically to OFF).	21.04 DC TEST PULSE



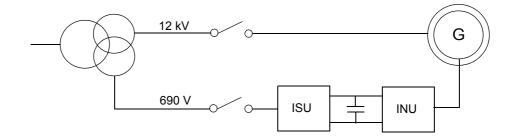
Start-up of the air damper

If the converter is NOT equipped with an air damper, continue to the next section.

A motor-controlled air damper is optionally available for cold conditions where humidity, cold air and dust could penetrate into the converter as backflow through the air outlet channel. The air damper is a plate located at the air outlet channel where it can close the air outlet mechanically. The air damper function closes the damper when the converter is not operating and its temperature goes below a predefined limit. The function opens the damper again when the converter restarts and its temperature rises high enough. See also *Doubly-fed induction generator control program for ACS800-67(LC) wind turbine converters firmware manual* [3AUA0000071689 (English)].

 $\langle 1 \rangle$

54 Start-up with low voltage stator


Set parameter 15.06 ANALOGUE OUTPUT 2 to 112.	15.06 ANALOGUE OUTPUT 2
Check that all temporary installations are removed.	
Close the door of the sliding frame.	
Close FF005.	
Switch the converter to Local control mode.	
Start the converter at zero speed.	
 Check that the air damper starts to open when the converter PP TEMP starts to increase. You can monitor signals by means of DriveWindow: 01.12 PP TEMPERATURE 15.06 ANALOGUE OUTPUT 2 (damper control) 05.07 ISU AI1 [V] (damper position is monitored via this signal). 	
Final settings	
Disable the parameter lock by setting parameter 16.03 PASS CODE to 358 or 564 in rotor-side and grid-side converter. Note: Not needed with grid-side converter control program IWXR74xx.	16.03 PASS CODE
Set the stator current fault trip limit to 0 A.	30.04 STATOR CURR TRIP
Make special parameter settings (if any) according to eg, grid code. See section <i>Setting the parameters according to grid code</i> on page <i>108</i> .	
Lock the parameter settings by setting parameter 16.01 PARAM LOCK to ON in rotor-side converter. Note: Not needed with grid-side converter control program IWXR74xx.	16.01 PARAM LOCK
Create a Backup Package [as MyBackupPackage.BPG] for rotor-side and grid-side converter and save it.	
Save parameters in text file [as MyParameterValues.txt] in rotor-side and grid-side converter.	
Remember to have pass code open in order to store parameter values above group 100 also.	
Switch the rotor-side converter back to Remote control mode.	

What this chapter contains

This chapter describes the medium voltage start-up procedure of the wind turbine converter equipped with doubly-fed induction generator control program.

Note: Grid-side converters are delivered with one of the following grid voltage measurement methods:

- The grid-side converter receives the voltage measurement data from the rotor-side converter. (The rotor-side converter is only fitted with an NUIM board.)
- The grid-side converter is fitted with a dedicated measurement board, NAMU / BAMU.

Each method requires a different grid-side converter control program version. The first method requires version IXXR7260 with Adaptive program version IZXX0169.AP (or later versions) while the second requires version IWXR7300 with Adaptive program version 00595631_C.AP (or later versions).

The grid-side converter parameter settings in the start-up procedure below differ depending on which grid voltage measurement method is used.

How to start-up the converter

In the start-up procedure presented here, the converter is operated locally from DriveWindow PC tool. For instruction on how to operate DriveWindow, see DriveWindow Online Help or DriveWindow 2 user's manual [3AFE64560981 (English)].

The start-up mainly uses rotor-side converter parameters. When grid-side converter parameters are needed, a reference to the grid-side converter parameter list in *ACS800-67(LC) doubly-fed induction generator control program firmware manual* [3AUA0000071689 (English)] is given.

After the first start-up, the converter can be powered up without using these start-up functions. The start-up procedure can be repeated later if start-up data needs to be changed.

WARNING! The generator may not be connected to the grid when the rotor is not rotating. The rotor speed must be in the operational speed area (normally 70...130% of the generator nominal speed). Otherwise grid connection is not

allowed by the converter control program.

Note: For testing purposes the rotor-side converter can be started without closing the stator breaker at zero speed. Note that the control program is not able to execute the commissioning check routines at zero speed. The grid-side converter can be tested even though the generator is not rotating.

Before you start, ensure you have the generator data sheet on hand.

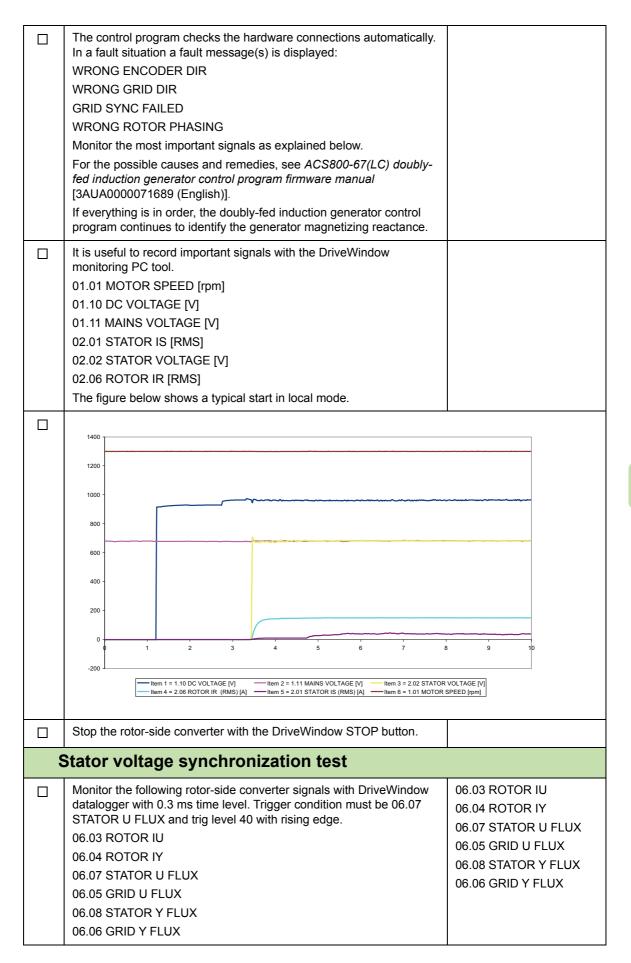
5	Safety		
(Engli	The start-up may only be carried out by a qualified electrician. The safety instructions must be followed during the start-up procedure. See ACS800-67 wind turbine converters for asynchronous slip ring generators hardware manual [3AFE68392454 (English)].		
	Check the installation. See the installation checklist in the converter hardware manual.		
F	Power-up		
	Connect fibre optic cables temporarily between channel CH3 of the rotor-side converter NDCU unit and the DDCS Communication (RUSB-02) card or PCMCIA card. If an active crowbar is in use (optional), the crowbar test requires communication with the NDCU unit of the rotor-side converter and RDCU unit of the grid-side converter: Connect the fibre optic cables in a ring connection between channel CH3 of the NDCU unit and channel CH3 of the RMIO board and the DDCS Communication (RUSB-02) card or PCMCIA card. When a PCMCIA card is used, follow the instructions included in the DriveWindow kit.		
	Apply main power.		
	Start the DriveWindow program.		
	Switch the rotor-side converter to local control mode.		
Manual start-up data entering			
	Upload the parameter and signal lists.		

Enter the generator data from the generator data sheet. For more information, see section <i>Generator data</i> on page <i>81</i> .	
generator nominal voltage (U1)	99.02 MOTOR NOM VOLTAGE
generator nominal stator-side current (I1)	99.03 MOTOR NOM CURRENT
generator nominal frequency	99.04 MOTOR NOM FREQ
generator nominal speed	99.05 MOTOR NOM SPEED
 generator nominal power Note: Generator values must be given at 50 Hz (60 Hz). Calculate generator nominal power with the following equation: 	99.06 MOTOR NOM POWER
99.06 MOTOR NOM POWER = $\frac{99.05 \text{ MOTOR NOM SPEED} \cdot \text{Wind turbine}}{\text{Wind turbine nom. speed}}$	nom. power
generator power factor (cos)	99.12 MOTOR NOM COSFII
generator synchronous speed	99.14 MOTOR SYNC SPEED
open-circuit voltage of the rotor (U2)	99.15 MOTOR OPEN CKT V
- maximum allowed long time rotor current limit (for reactive power supervision) ${\it I}_{\rm M}$	99.16 MOTOR NOM IM
- resistances and reactances of the generator equivalent circuit. Mutual inductance 99.24 $X_{\rm m}$ is calculated with the following equation:	99.21 Rs 99.22 XIS 99.23 X2S
$X_m = \frac{\frac{E}{U} \cdot U1}{\sqrt{3} \cdot I_m}$	99.24 XM 99.25 Rr
E = stator voltage without losses (on the generator data sheet) U = stator voltage (on the generator name plate). The rotor resistance 99.25 R_r (R2PH on the ABB generator	
equivalent circuit data) reduced to the stator reference frame is calculated with the following equation:	
$R_r = \frac{R2PH}{\left(\frac{U2}{U1}\right)^2}$	
Note: Some generator manufacturers give equivalent circuit data for delta connection. In that case the given reactance values must be divided by three.	
 maximum measurable stator flux. See section Stator current and voltage measurement on page 79. 	99.27 MAX MEAS FLUX
Define the maximum measurable stator current (depends on the used current transformer). See section <i>Stator current and voltage measurement</i> on page 79.	99.28 MAX MEAS IS

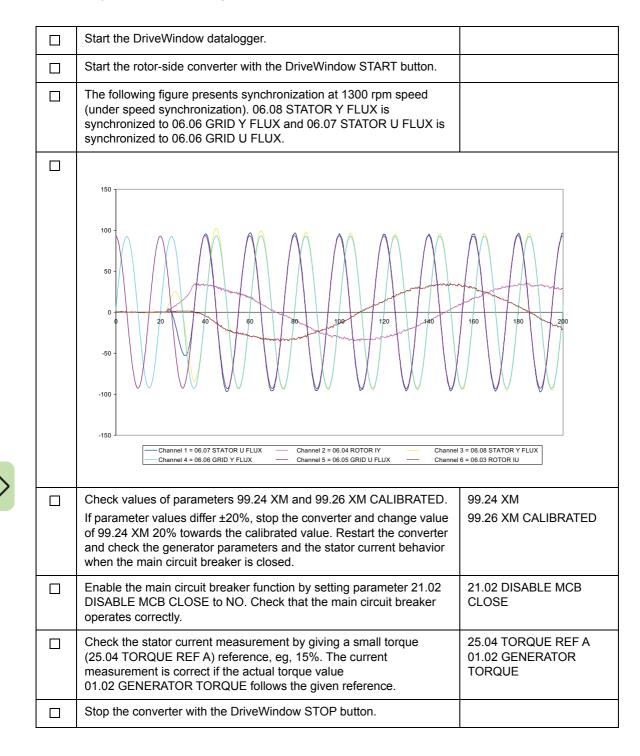
	Enter the number of encoder pulses.	50.04 PULSE NR	
	Select the communication profile used by the converter. For more information see section <i>ABB Drives communication profile</i> on page 90.	16.11 COMM PROFILE	
	Set parameter limits in group 20 LIMITS according to the process requirements. 20.05 USER POS TORQ LIM defines the motoring torque limit 20.06 USER NEG TORQ LIM defines the generating torque limit.	20.05 USER POS TORQ LIM 20.06 USER NEG TORQ LIM 20.21 SWITCH ON SPEED 20.22 SWITCH OFF SPEED	
	Select the reactive power reference type (PERCENT/KVAR/PHII/COSPHII).	23.04 REACT POW REF SEL	
	Set the stator overcurrent trip limit. During commissioning when the converter runs in local control mode without torque references, set parameter value to approximately 15 A. After commissioning set parameter value to 0 A.	30.04 STATOR CURR TRIP	
	Set the over/underspeed limits.	30.09 OVERSPEED LIMIT 30.10 UNDERSPEED LIMIT	
	Activate the external communication by setting parameter 98.02 COMM MODULE to FBA DSET 10.	98.02 COMM MODULE	
	Set the fieldbus adapter data according to the used external control system. Note: The configuration parameters are not visible if the module is not connected or activated in the control program. See appropriate adapter Hardware Manual.	51 MASTER ADAPTER	
	Activate the fieldbus adapter supervision toggle bit (if needed).	70.25 TOGGLE BIT SEL 70.26 TOGGLE ADDRESS SEL	
	Define the current limit and breaking device type for the grid connection between stator and grid. 0 A = Medium voltage circuit breaker used for disconnecting stator from grid.	20.27 CONT OPEN CUR	
	Check that the breaker/contactor configuration of the converter is set correctly according to the delivery. For configurations available and corresponding parameter settings, see section <i>Stator circuit connection to grid</i> on page 36.	16.20 GRID CONNECT MODE	
٦	Time setting		
	 Set rotor-side converter 16.01 PARAM LOCK to OFF. Set the date and time as follows: Set parameter 95.07 RTC MODE value to SET. Check/adjust the date and time by parameters 95.0195.06. Set parameter 95.07 RTC MODE value to SHOW. 	16.01 PARAM LOCK 95.07 RTC MODE 95.0195.06	
[Digital inputs		
	Check that all digital inputs are connected properly.	01.15 DI STATUS	

(Grid-side converter and crowbar test		
Communication between the grid-side converter and the rotor-side converter is checked by controlling the grid-side converter unit via the rotor-side converter unit parameters.			
	Set parameter 21.01 ISU LOCAL CTR WORD to 9 (hex), ie, 1001 (bin): grid-side converter starts charging the DC capacitors, closes the main contactor and starts modulating.	21.01 ISU LOCAL CTR WORD	
	Check the grid-side converter status. Note : Only the three least significant bits are relevant in this case. 231H (1000110 <u>001</u> bin) before the grid-side converter is started 737H (11100110 <u>111</u> bin) when the grid-side converter is running 238H (1000111 <u>000</u> bin) when the grid-side converter has tripped on a fault.	05.10 ISU STATUS WORD	
	Check that the DC link is charged.	01.10 DC VOLTAGE	
	Check that the Voltage and Current Measurement Unit NUIM-6x functions, ie, the grid frequency is positive and the grid voltage is correct.	01.05 NET FREQUENCY 01.11 MAINS VOLTAGE	
	Stop the grid-side converter by setting parameter 21.01 ISU LOCAL CTR WORD to 0 (hex).	21.01 ISU LOCAL CTR WORD	
	Check the functioning of the crowbar by starting and stopping the grid-side converter. (Parameter 21.01 ISU LOCAL CTR WORD setting 9 (hex) = START and 0 (hex) = STOP) When DC voltage is 0 V, 01.15 DI STATUS bit 5 value must be 0 (ie, crowbar inactive). 01.15 DI STATUS = 1303 (hex) When DC voltage exceeds 100 V, 01.15 DI STATUS bit 4 value must be 1 (ie, crowbar active). 01.15 DI STATUS = 1713 (hex)	01.15 DI STATUS	
	Enable the grid-side converter parameter lock by setting parameter 16.03 PASS CODE to 2303. Parameter groups 100202 become visible when the parameter lock is enabled.	16.03 PASS CODE	
	Set grid-side converter 16.01 PARAM LOCK to OFF.	16.01 PARAM LOCK	
If the	If the converter is NOT equipped with an active crowbar, continue to the next section.		
	Activate the active crowbar by setting rotor-side converter parameter 31.01 CROWBAR HW TYPE according to the type of active crowbar in use. Note: If the converter is equipped with an active crowbar, it must always be activated by parameter 31.01 even when low voltage ride through (LVRT) and / or grid support is not used.	31.01 CROWBAR HW TYPE	
	Start the grid-side converter by setting parameter 21.01 ISU LOCAL CTR WORD to 9 (hex).	21.01 ISU LOCAL CTR WORD	
	Check the communication between the rotor-side converter and the active crowbar: The communication is OK if the temperature of the crowbar is about 2540 °C and the converter does not trip for crowbar communication time-out.	06.13 CB IGBT TEMP	

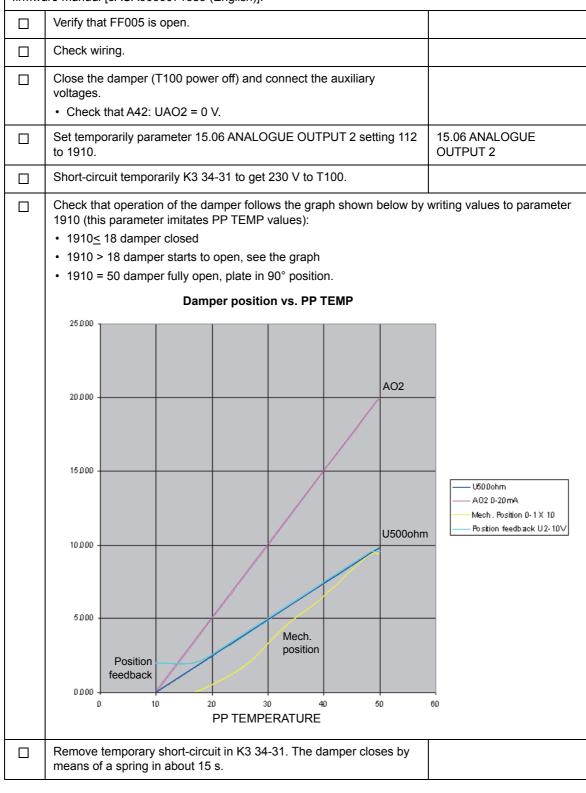
NUIM board in use (grid-side converter control program IXXR72xx):	
• Enable the grid-side converter parameter lock by setting parameter 16.03 PASS CODE to 2303. Parameter groups 100202 become visible when the parameter lock is enabled.	16.03 PASS CODE
NAMU / BAMU board in use (grid-side converter control program IWXR74xx):	
 Parameter groups needed are visible automatically. 	
Check grid-side converter supply voltage measurement:	
NUIM board in use (grid-side converter control program IXXR72xx):	See grid-side converter parameter list:
Set grid-side converter parameter 138.04 CASCADE MEAS ENA to ON and	138.04 CASCADE MEAS ENA
Set grid-side converter parameter 138.01 NAMU BOARD ENABLE to OFF.	138.01 NAMU BOARD ENABLE
NAMU / BAMU board in use (grid-side converter control program IWXR74xx):	
 Set grid-side converter parameter 40.04 PHASE MEAS ENA to OFF and 	40.04 PHASE MEAS ENA
 Set grid-side converter parameter 40.02 NAMU BOARD ENABLE to ON if NAMU board is in use. 	40.02 NAMU BOARD ENABLE
 Set grid-side converter parameter 40.03 BAMU BOARD ENABLE to ON if BAMU board is in use. 	
NUIM board in use (grid-side converter control program IXXR72xx):	01.11 MAINS VOLTAGE
Check grid-side converter parameter 01.11 MAINS VOLTAGE value (= mains voltage received from the rotor-side converter). If the voltage level is correct, communication between rotor-side and grid-side converters is OK.	
NAMU / BAMU board in use (grid-side converter control program IWXR74xx):	
Check grid-side converter parameter 01.11 MAINS VOLTAGE value (= mains voltage received from the rotor-side converter). If the voltage level is correct, measurement is OK.	



Check grid-side converter mains voltage measurement phase sequence:	See grid-side converter parameter list:
Monitor the following grid-side converter signals with DriveWindow	16.03 PASS CODE
datalogger with 1 ms time level, when grid-side converter is started:	138.02 FLUX X NET ACT
NUIM board in use (grid-side converter control program IXXR72xx):	138.03 FLUX Y NET ACT
138.02 FLUX X NET ACT	161.04 FLUX X ACT
138.03 FLUX Y NET ACT	161.05 FLUX Y ACT
161.04 FLUX X ACT 161.05 FLUX Y ACT	
Start DriveWindow datalogger and trigger manually. Upload	
datalogger information:	
If parameter 138.02 FLUX X NET ACT and 161.04 FLUX X ACT signals are in phase and parameter 138.03 FLUX Y NET ACT and	
161.05 FLUX Y ACT signals are in phase, the flux measurement is	
OK.	
NAMU / BAMU board in use (grid-side converter control program	02.22 FLUX X NET ACT
	02.23 FLUX Y NET ACT
02.22 FLUX X NET ACT 02.23 FLUX Y NET ACT	02.20 FLUX X ACT
02.20 FLUX X ACT	02.21 FLUX Y ACT
02.21 FLUX Y ACT	
Start DriveWindow datalogger and trigger manually. Upload datalogger information:	
If parameter 02.22 FLUX X NET ACT and 02.20 FLUX X ACT signals	
are in phase and parameter 02.23 FLUX Y NET ACT and 02.21	
FLUX Y ACT signals are in phase, the flux measurement is OK. Note: If this test fails, grid-side converter grid voltage cabling must be	
checked. See the converter hardware manual.	
Check the grid-side converter parameters. See ACS800-67(LC)	
<i>doubly-fed induction generator control program firmware manual</i> [3AUA0000071689 (English)].	
Stop the grid-side converter by setting parameter 21.01 ISU LOCAL	21.01 ISU LOCAL CTR
CTR WORD to 0.	WORD
Check the grid-side converter parameters. See chapter ACS800-	
67(LC) doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)].	
Disable the main circuit breaker function by setting parameter 21.02 DISABLE MCB CLOSE to YES (the rotor-side converter	21.02 DISABLE MCB CLOSE
synchronizes to the grid but does not close the main circuit breaker).	
Start the converter with zero speed with the DriveWindow START	06.11 CB BRIDGE
button.	VOLTAGE
Check crowbar measurements after the DC link has been charged:	06.12 CB IGBT VOLTAGE
Measurements are OK, if parameter 06.11 CB BRIDGE VOLTAGE	06.13 CB IGBT TEMP
and 06.12 CB IGBT VOLTAGE values are higher than the DC link voltage (01.10 DC VOLTAGE) and parameter 06.13 CB IGBT TEMP	
value is approximately 2540 °C.	
Stop the converter with the DriveWindow STOP button.	



	Test active crowbar functioning with	manual trigger:	06.11 CB BRIDGE
	Select parameter 06.11 CB BRIDGE VOLTAGE and 06.12 CB IGBT		VOLTAGE
	VOLTAGE signals to be monitored w	06.12 CB IGBT VOLTAGE	
	Use the following DriveWindow setting	21.08 MANUAL TRIGGER	
	• Interval = 2		
	 Trigg Conditions = Level, Falling e 		
	Trig Variable = 146.31 CB BRIDGI		
	• Trigg Level = 700		
	Start the rotor-side converter in local START button. (Rotor does not need		
	Start the DriveWindow datalogger aft		
	Set parameter 21.08 MANUAL TRIG ON.		
	Note: 16.01 PARAM LOCK must be command.		
	Upload datalogger.		
	If the measured diode bridge voltage		
	drops for a short time when triggered	I, the active crowbar functions.	
	The following figure shows the active	e crowbar voltages when manual tr	iggering is used.
	The figure depicts, the voltage with a 400 V unit. With a 690 V unit, the basic voltage level would be approximately 1250 V.		
		Detelement (2) (
	Monitor Datalogger	Datalogger {0} {'	1}DL2
	Status Filled, Initialized Trigged by Level		
		- 036	and the second
	Trig Conditions Level Zeriable O6.12: CB IGBT VOLTAG		
	ATrig Level 700	720-	
	← Trig Hysteresis 0		
	¶ Y Axis Maximum 1200.00 ¶ Y Axis Minimum 0.00	480 -	
	I 06.11: CB BRIDGE VOLTAGE [V] 1.00 * x + 0.00 II 06.12: CB IGBT VOLTAGE [V] 1.00 * x + 0.00		
	III Channel 3 1.00 * x + 0.00 IV Channel 4 1.00 * x + 0.00	240-	
	Y Channel 5 1.00 * x + 0.00 Y Channel 6 1.00 * x + 0.00		
		-0.0760 -0.0460 -0.0160 Time (s)	0.0140 0.0440 0.0740
			•
	, j <u>es</u> t		
	Stop the converter with the DriveWindow STOP button.		
	Set the Low Voltage Ride Through fu	nction and Grid Support function	Grid support function can
	parameters. Values must be set acco	.	be tuned by parameters in
	See ACS800-67(LC) doubly-fed indu firmware manual [3AUA0000071689		group 32 LV RIDE- THROUGH.
_	-		
F	Rotor-side converter test		
	Disable the main circuit breaker func		21.02 DISABLE MCB
	DISABLE MCB CLOSE to YES (the synchronizes to the arid but does not		CLOSE
	synchronizes to the grid but does not close the main circuit breaker). Note: Parameter 21.02 value is cleared automatically if the control		
	mode is changed to remote or a fault is detected.		
	Check that the wind turbine rotates the rotor speed within acceptable 01.01 MOTOR SPEED range (approximately 9001100 rpm).		
	Start the rotor-side converter with the DriveWindow START button.		


 $\langle \rangle$

Start-up of the air damper

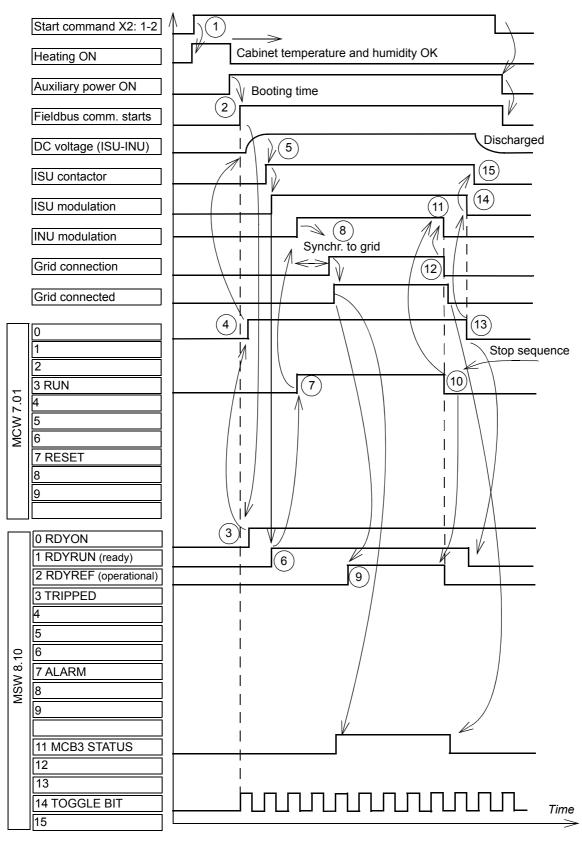
If the converter is NOT equipped with an air damper, continue to the next section.

A motor-controlled air damper is optionally available for cold conditions where humidity, cold air and dust could penetrate into the converter as backflow through the air outlet channel. The air damper is a plate located at the air outlet channel where it can close the air outlet mechanically. The air damper function closes the damper when the converter is not operating and its temperature goes below a predefined limit. The function opens the damper again when the converter restarts and its temperature rises high enough. See also *Doubly-fed induction generator control program for ACS800-67(LC) wind turbine converters firmware manual* [3AUA0000071689 (English)].

 $\langle \rangle$

	Set parameter 15.06 ANALOGUE OUTPUT 2 to 112.	15.06 ANALOGUE OUTPUT 2
	Check that all temporary installations are removed.	
	Close the door of the sliding frame.	
	Close FF005.	
	Switch the converter to Local control mode.	
	Start the converter at zero speed.	
	 Check that the air damper starts to open when the converter PP TEMP starts to increase. You can monitor signals by means of DriveWindow: 01.12 PP TEMPERATURE 15.06 ANALOGUE OUTPUT 2 (damper control) 05.07 ISU AI1 [V] (damper position is monitored via this signal). 	
F	Final settings	
	Disable the parameter lock by setting parameter 16.03 PASS CODE to 358 or 564 in rotor-side and grid-side converter. Note: Not needed with grid-side converter control program IWXR74xx.	16.03 PASS CODE
	Set the stator current fault trip limit to 0 A.	30.04 STATOR CURR TRIP
	Set the stator current fault trip limit to 0 A. Make special parameter settings (if any) according to eg, grid code. See section Setting the parameters according to grid code on page 108.	
	Make special parameter settings (if any) according to eg, grid code. See section <i>Setting the parameters according to grid code</i> on page	
	Make special parameter settings (if any) according to eg, grid code. See section Setting the parameters according to grid code on page 108. Lock the parameter settings by setting parameter 16.01 PARAM LOCK to ON in rotor-side converter. Note: Not needed with grid-side converter control program	TRIP
	Make special parameter settings (if any) according to eg, grid code. See section Setting the parameters according to grid code on page 108. Lock the parameter settings by setting parameter 16.01 PARAM LOCK to ON in rotor-side converter. Note: Not needed with grid-side converter control program IWXR74xx. Create a Backup Package [as MyBackupPackage.BPG] for rotor-side	TRIP
	Make special parameter settings (if any) according to eg, grid code. See section Setting the parameters according to grid code on page 108.Lock the parameter settings by setting parameter 16.01 PARAM LOCK to ON in rotor-side converter.Note: Not needed with grid-side converter control program IWXR74xx.Create a Backup Package [as MyBackupPackage.BPG] for rotor-side and grid-side converter and save it.Save parameters in text file [as MyParameterValues.txt] in rotor-side	TRIP

Starting sequence


The following figures present the starting sequences for the ABB drives profile and the Profile B. (Profile is selected by parameter 16.11 COMM PROFILE.)

Terms and abbreviations used in the figures:

Term/Abbreviation	Information
MCW	Main Control Word
МСВ	Main circuit breaker
MSW	Main Status Word

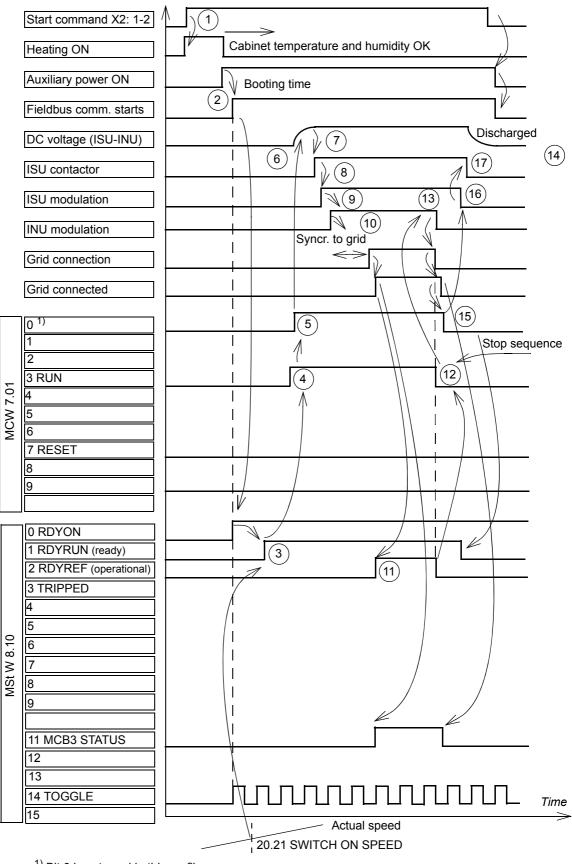


ABB Drives profile

Profile B

¹⁾ Bit 0 is not used in this profile.

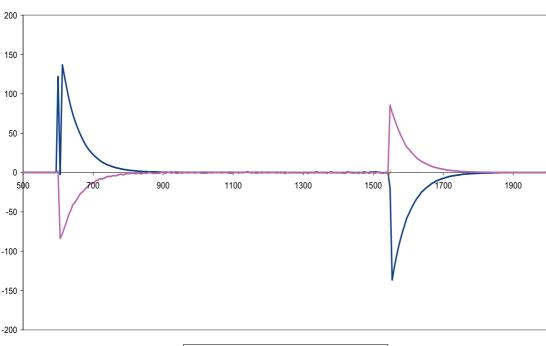
Start-up measurements

The start-up measurements described in this section give useful information if a problem is detected during the start-up. These measurements are not normally required during the start-up procedure.

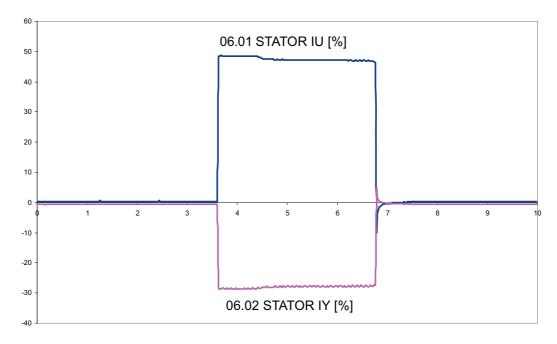
WARNING! The safety instructions must be followed during start-up procedure. See the converter hardware manual for safety instructions.

Stator current transformer polarity check

The converter firmware contains an automatic stator current transformer offset compensation function. Automatic offset calibration can be disabled with parameter 21.07 BATTERY TEST when the stator current polarity is checked during start-up procedure. If offset calibration is enabled (parameter 21.07 BATTERY TEST is set to NO) when the external battery is connected in parallel with the stator current transformers, the measured waveforms may be distorted. The offset calibration is disabled by setting the parameter 21.07 BATTERY TEST to CONNECT BATT.


Since the converter firmware transforms the measured currents from 3-phase coordinate values into 2-phase coordinate values, measured signals are different compared to the direct measurements.

Below is signal behavior presented when the battery test is executed.


Phase U test

21.07 BATTERY TEST is set to NO

- 06.01 STATOR IU [%] ---- 06.02 STATOR IY [%]

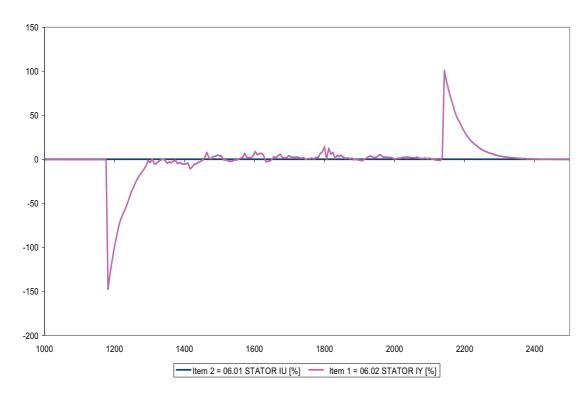
21.07 BATTERY TEST is set to CONNECT BATT

Phase U current transformer polarity check:

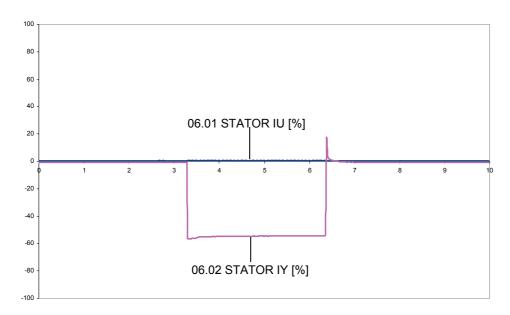
- +1.5 V is connected to X1:1 of the NUIM-6x unit and
- -1.5 V is connected to X1:2 of the NUIM-6x unit.

06.01 STATOR IU measures positive values. The values depend on the used scaling factors.

06.02 STATOR IY measures negative values, which are approximately 60% of the STATOR IU.


Note: Values depend on the battery voltage and current transformer transformation ratio.

Note: When battery is removed, the signals behave in the opposite way.


Phase W test

\Diamond

21.07 BATTERY TEST is set to CONNECT BATT

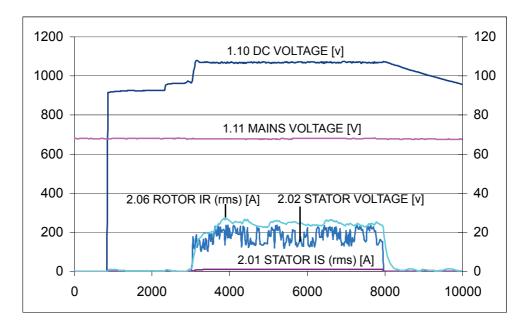
Phase W current transformer check:

- +1.5 V is connected to X2:1 of the NUIM-6x unit and
- -1.5 V is connected to X2:2 of the NUIM-6x unit.

06.01 STATOR IU is zero.

06.02 STATOR IY measures negative values. Absolute values are higher than with the phase U test.

Note: Values depend on the battery voltage and current transformer transformation ratio.

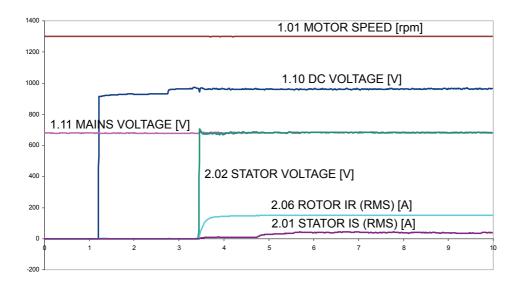

Note: When battery is removed, the signals behaves in the opposite way.

Test at zero speed

For testing purposes it is possible to start the converter at zero speed. Then the rotor-side converter modulates but the main circuit breaker will not be closed. The produced slip ring current is approximately 20...30 A which does not harm the slip rings during a short test period.

This feature can be used in the commissioning when the wind is so weak that it rotates the blades but can not accelerate the rotor to the minimum speed ie, 1 m/s needed at start-up.

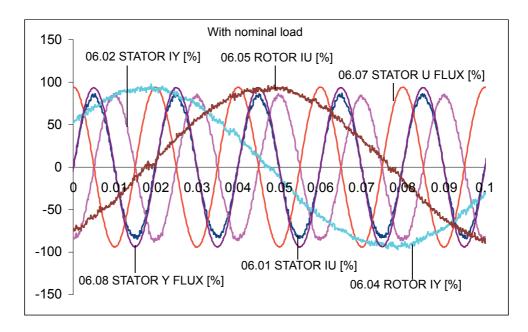
The figure below represents normal behavior when the rotor-side converter is started for a short time.

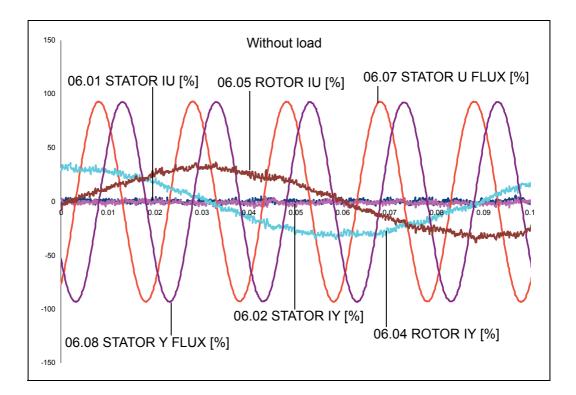


74 Start-up with medium voltage stator

Start in local control mode

It is useful to record important signals with the DriveWindow PC tool when the wind turbine converter is connected to the grid. The figure below represents a typical start in local mode.




- 1. Grid-side converter is started and DC link charging begins. DC link voltage starts to increase and auxiliary power is connected to the rotor-side converter. After these actions, the converter signals can be monitored.
- 2. Grid-side converter charging is finished. Modulation of both converters starts. Stator voltage increases near to the measured grid voltage.
- 3. DC voltage increases to its maximum if the rotor speed is near the lowest possible start speed.
- 4. The converter software adjusts the stator voltage in order to minimise current transients during grid connection.
- 5. Main circuit breaker is closed.

Voltage and current waveform examples

The following figures represent the grid voltage, stator current and rotor current waveforms with nominal load and without load in the oversynchronization region.

76 Start-up with medium voltage stator

Practical examples

What this chapter contains

This chapter contains examples on how to determine values for critical parameter settings.

Setting up the fieldbus

Fieldbus interfaces

For descriptions of the fieldbus connections, refer to

- ACS800 IGBT supply control program firmware manual [3AFE68315735 (English)]
- ACS800 grid-side control program firmware manual [3AUA0000075077 (English)]
- ACS800-67(LC) doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)]
- fieldbus adapter manuals.

Entering start-up data and torque settings

Calculating/setting the motor nominal torque

You need

- the DFIG data sheets from the generator supplier for the DFIG of the wind turbine that contain
 - rated (nominal) values
 - DFIG equivalent circuit (from stator side, in star connection)
 - calculated operation points and type test data (optional)
- calculation tool, like Excel or calculator.

If the equivalent circuit is given in rotor-side, convert the values to stator-side.

If the equivalent circuit is in delta connection or given for main voltage, divide the reactance and resistance values by three.

Parameters 99.05 MOTOR NOM SPEED and 99.06 MOTOR NOM POWER contain motor nominal speed (rpm) and power. Motor nominal torque (100%) is calculated from the values of parameters in group 99 START-UP DATA. There is no parameter for it and there is no other way of setting the nominal torque.

Torque set-point

Torque is limited by parameters 20.05 USER POS TORQ LIM and 20.06 USER NEG TORQ LIM. The parameters should be set to values which are achievable with the generator-drive current capacity combination defined in the design.

If the torque reference given by the turbine controller is too high (ie, the pull-out torque of the generator or current capacity of the converter have been reached), the converter will limit the torque.

In extreme cases, if the torque reference is remarkably higher than what is allowed by the generator-drive current capacity combination, and the limitation of current by limiting torque does not succeed, the converter will trip on overcurrent. It stops operation immediately and the torque on the generator shaft disappears. Necessary overspeed and safety system dynamics margins must be maintained in the system design.

Stator current and voltage measurement

NUIM-6x voltage measurement

Voltages U1,V1 and W1 are measured at both sides of the stator circuit breaker/contactor(s). The 690 V AC grid voltage is connected to the Voltage and Current Measurement unit (NUIM).

Stator flux is measured through a low pass filter which has different time constants for 690 V AC and 575 V AC. The control program must know which one is in use. The used voltage is defined as follows:

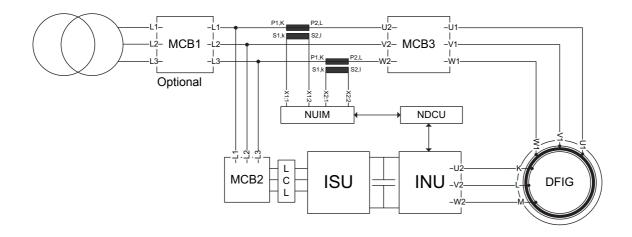
	Parameter	Setting				
For 690 V / 50 Hz	99.27 MAX MEAS FLUX	<u><</u> 2.43936 Wb				
	99.33 NUIM61 PHS OFFSET	<u><</u> 47.06 deg				
For 575 V / 60 Hz	99.27 MAX MEAS FLUX	<u><</u> 1.605 Wb				
	99.33 NUIM61 PHS OFFSET	<u><</u> 44.35 deg				
For 690 V / 60 Hz	99.27 MAX MEAS FLUX	<u>≤</u> 2.407 Wb				
	99.33 NUIM61 PHS OFFSET	<u><</u> 44.35 deg				

NUIM-1x voltage measurement

If voltage measurement is accomplished using an instrument voltage transformer the measurement board used is of the type NUIM-10C. In this case the maximum measurable flux must be calculated by the formula:

99.27 MAX MEAS FLUX =
$$\frac{Un1}{Un2} \cdot \frac{5.963541 \cdot \sqrt{1 + (f \times 0.065175)}^2}{f}$$

- Un1 = voltage transformer primary side voltage in volts (V)
- Un2 = voltage transformer secondary side voltage in volts (V)
- f = grid frequency in hertz (Hz)


For more information on the NUIM Voltage and Current Measurement unit, see the converter hardware manual.

NUIM-1x and NUIM-6x current measurements

Two stator currents are measured from phases U1 and W1 through current transformers (CT). The CT ratio is the ratio of primary current input to secondary current output at full load. For example a CT with a ratio of 2500:1 is rated for 2500 primary amperes at full load and will produce 1 A of secondary current when 2500 A flow through the primary. If the primary current changes the secondary current output will change accordingly. For example if 1500 A flow through the 2500 A rated primary the secondary current output will be 0.6 A (1500 : 2500 = 0.6 : 1). An example diagram of the current measurement is

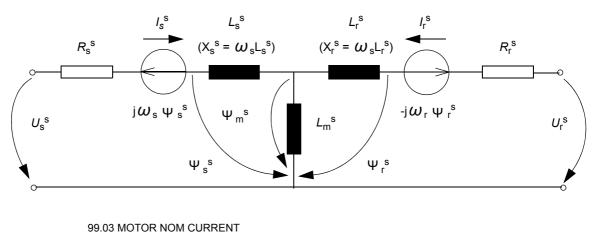
80 Practical examples

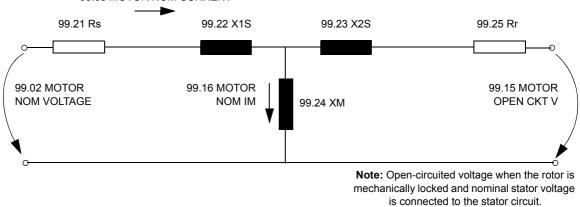
shown below. In this example the parameter 16.20 GRID CONNECT MODE is set to MCB1+MCB3/B.

The maximum measurable stator current must be set by a parameter. The value is calculated with the following equation:

99.28 MAX MEAS IS =
$$\frac{4.5 \text{ V}}{2,73333 \text{ ohm}} \cdot \text{CT}$$

CT = current transformer ratio


The polarity of a current transformer is determined by the direction the coils are wound around the core (clockwise or counterclockwise) and the way the leads are brought out of the transformer case. Current transformers have subtractive polarity and following designations for installation: P1: primary current, line-facing direction; P2: primary current, load-facing direction; and S1: secondary current. Correct polarity has to be taken into account when installing and connecting current transformer to power metering.


Sometimes it is not possible to install current transformers mechanically so that current flow is from P1 to P2 which is standard. This means that measurement polarity is reversed. In this case the polarity can be corrected by entering a negative value in this parameter.

Generator data

Generator rating plate equivalent circuit parameters

The equivalent circuit of the generator is shown below. Note that the equivalent circuit is to be are derived looking from the stator-side ie, the voltages and currents are reflected on the stator-side. To calculate the equivalent rotor circuit parameters (resistance and inductance) from the rotor-side to stator-side, appropriate stator-to-rotor conversion ratio information should be used.

Since the application measures both rotor- and stator-side quantities, the identification run method is not used with doubly-fed induction generator control. The control needs to be given the following data (from the generator data sheet) manually.

Generator data	Parameter				
Rated stator voltage	99.02 MOTOR NOM VOLTAGE				
Rated stator current	99.03 MOTOR NOM CURRENT				
Rated stator frequency	99.04 MOTOR NOM FREQ				
Rated generator nominal speed	99.05 MOTOR NOM SPEED				
(rotor short-circuited)	Note: As generator, positive slip.				
Rated generator power	99.06 MOTOR NOM POWER				
	Note: See the calculations below.				
P.F (rotor short-circuited)	99.12 MOTOR NOM COSFII				
Generator synchronous speed	99.14 MOTOR SYNC SPEED				

82 Practical examples

Generator data	Parameter
Transformation ratio between the	99.15 MOTOR OPEN CKT V
stator and the rotor. Defined when rotor shaft is mechanically locked and nominal stator voltage is fed to the stator windings.	Note: Rotor open-circuit voltage.
Long time rotor current limitation	99.16 MOTOR NOM IM Note: $I_{\rm M}$ is not needed in the slip ring generator model. $I_{\rm M}$ is used for defining the maximum allowed long time rotor current limit.
Stator resistance (R _s)	99.21 Rs
Stator leakage reactance	99.22 X1S
Rotor leakage reactance	99.23 X2S
Mutual reactance	99.24 XM Note: See the equation on page <i>86</i> .
Rotor resistance (<i>R</i> _r)	99.25 Rr Note: R_r must be referred to the stator frame. See the equation on page 86.

Note: Some generator manufacturers give equivalent circuit data for delta connection. In that case the given reactance values must be divided by three.

Parameter	Description	Source	Description				
99.02 MOTOR NOM VOLTAGE	Defines the nominal generator voltage.	Rated stator voltage in data sheet					
99.03 MOTOR NOM CURRENT	Defines the nominal generator stator-side current.	Rated stator current in data sheet	The value is for information only. It is not used by the firmware in any way.				
99.04 MOTOR NOM FREQ	Defines the nominal generator frequency.	Rated stator (grid) frequency in data sheet	The value is either 50 Hz or 60 Hz depending on the grid.				
99.05 MOTOR NOM SPEED	Defines the nominal generator speed.	Defined in data sheet or calculated estimate.	Used for the modeling of the DFIG.				
		See separate instruction below.	The speed of DFIG when operating rotor short- circuited with nominal power.				
99.06 MOTOR NOM POWER	Defines the nominal generator power.	Calculated value See separate instruction	Used for the scaling of the torque reference.				
		below.	Note: This is not the rated power of the DFIG.				
99.12 MOTOR NOM COS FII	Defines the generator power factor at nominal loading point. Must be equal to the value on the generator data sheet.	Power factor in data sheet	The value is for information only. It is not used by the firmware in any way.				
99.14 MOTOR SYNC SPEED	Defines the synchronous speed of the generator.	Select based on motor pole pair and grid	Select				
		frequency.	50 Hz 60 Hz 4-p 1500 1800				
			6-p 1000 1200				
99.15 MOTOR OPEN CKT V	Defines the open-circuit voltage of the rotor. That is, rotor voltage without load when nominal voltage is connected to the stator and the rotor is locked (U2 on the generator data sheet).	Locked rotor voltage in data sheet.	Transformation ratio between the stator and the rotor. Defined when rotor shaft is mechanically locked and nominal stator voltage is fed to the stator windings.				
99.16 MOTOR NOM IM	Defines the maximum limit of the rotor current to avoid generator overheating. If the rotor current exceeds the value of parameter 99.16, the capacitive reactive power is ramped down until the current has decreased below the value of the parameter 99.16.	 The limit for rotor current protection. Select from the data sheet largest rotor current in the calculated operation points, or maximum rotor current 	The maximum limit of the rotor current defined by the generator supplier.				
99.21 Rs	Defines the stator resistance.	Stator resistance (<i>R</i> _s) of equivalent circuit	DFIG characteristics value				
99.22 X1S	Defines the stator leakage reactance.	Stator leakage reactance of equivalent circuit	DFIG characteristics value				
99.23 X2S	Defines the rotor leakage reactance reduced to the stator side.	Rotor leakage reactance of equivalent circuit	DFIG characteristics value				

Parameters of parameter group 99

Parameter	Description	Source	Description
99.24 XM	Defines the mutual inductance.	Mutual reactance of equivalent circuit	DFIG characteristics value
99.25 Rr	Defines the rotor resistance, which is reduced to the stator side.	Rotor resistance (<i>R</i> _r) of equivalent circuit	DFIG characteristics value
99.27 MAX MEAS FLUX	Defines the maximum measurable stator flux.	For an integrated power cabinet with stator switching the value is	The ratio of the voltage transformers. See separate instruction
		preset at the factory.	below.
		For a medium voltage stator switching set the value based on voltage transformer rating.	
99.28 MAX MEAS IS	Defines the maximum measurable stator current.	For an integrated power cabinet with stator	The ratio of the current transformers.
	Negative value will negate measured stator phase	switching the value is preset at the factory.	See separate instruction below.
	currents.	For a medium voltage stator switching set the value based on voltage transformer rating.	

Parameter 99.05 MOTOR NOM SPEED

The value is given as generator, that is the value is greater than the synchronous speed.

Data sheet: In type testing the DFIG may be run with short-circuited rotor as motor under nominal load. In such case there will be a speed in the data sheet that is slightly under the synchronous speed. Calculate the difference between the synchronous speed and this indicated speed. This difference is the 'positive slip'.

Par. 99.05 = synchronous speed + positive slip = 1200 rpm + 5.2 rpm = 1205.2 rpm

Estimation based on equivalent circuit: The slip of induction machine is related to the resistance of the machine.

 $Zpu = (Motor nominal voltage)^2/Motor nominal power = (12000 V)^2/2773 kW = 51.93 ohm$

Rotor resistance (120 Cel) = 0.2268 ohm

R2pu= 0.2268 ohm / 51.93 ohm = 0.00436748

Synchronous speed = 1200 rpm

Positive slip = 1200 rpm × 0.00436748 = 5.24097 rpm

Par. 99.05 = 1200 rpm + 5.2409 rpm = 1205.2 rpm

Generator nominal power calculation

Generator values must be given at 50 Hz (60 Hz). These values are not equal to the wind turbine nominal values. Wind turbine nominal power is achieved with 100% torque reference at the nominal wind turbine speed.

Calculate the generator nominal power with the following equation.

```
99.06 MOTOR NOM POWER = 

<u>99.05 MOTOR NOM SPEED · Wind turbine nom. power</u>

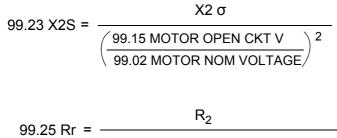
Wind turbine nom. speed
```

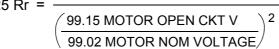
Example:

Nominal operating point: Wind turbine nominal power is 1600 kW, wind turbine nominal speed is 1770 rpm and generator nominal speed is 1511 rpm.

With 100% torque reference at 1770 rpm, the wind turbine output is 1600 kW, when parameter 99.06 MOTOR NOM POWER value is

99.06 MOTOR NOM POWER = (1511 rpm · 1600 kW) / 1770 rpm = 1365 kW.


Setting the equivalent circuit values to the parameters


When the equivalent circuit values are given for star connection and the rotor values are reduced to the stator reference frame, the equivalent circuit values are set to the parameters as shown in the table below.

Parameter	Equivalent circuit value	Often marked as
99.21 Rs	R _s	R ₁
99.22 X1S	X _s ×ω	Χ1σ
99.23 X2S	X _r × W	Xr ơ'
99.24 XM	$X_{m} \times \omega$	X _h
99.25 Rr	R _r	R ₂ '

Note: If the equivalent circuit values are given for delta connection, the values for parameters 99.21 Rs, 99.22 X1S, 99.23 X2S, 99.24 XM and 99.25 Rr must be divided by three.

 $X2\sigma'$ and R_2' must be reduced to the stator reference frame. Reducing is marked with ' and it is calculated as shown below.

86 Practical examples

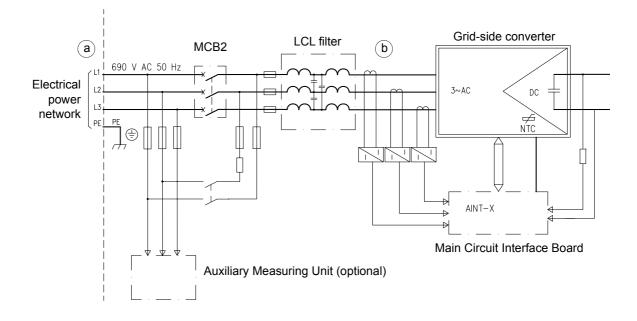
If only generator rating plate values are known, such rating plate values are needed that are given when rotor is short-circuited. Power factor must be below 1. First magnetizing current of the generator is calculated as shown below:

99.16 MOTOR NOM IM = 99.03 MOTOR NOM CURRENT $\sqrt{1-99.12}$ MOTOR NOM COSFII²

Mutual inductance X_m and rotor resistance R_r calculations

Mutual inductance X_{m} (rotor-side converter parameter 99.24 XM) is calculated with the following equation:

99.24 XM = $\frac{99.02 \text{ MOTOR NOM VOLTAGE}}{\sqrt{3} \cdot 99.16 \text{ MOTOR NOM IM}}$


The rotor resistance R_r (rotor-side converter parameter 99.25 Rr) reduced to the stator reference frame (R2PH on the ABB generator equivalent circuit data) is calculated with the following equation:

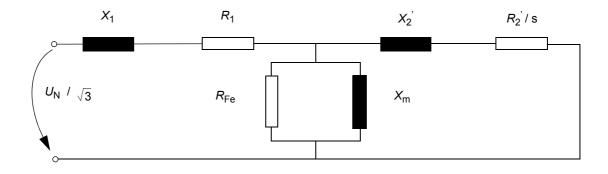
99.25 Rr =
$$\frac{R2PH}{\left(\frac{99.15 \text{ MOTOR OPEN CKT V}}{99.02 \text{ MOTOR NOM VOLTAGE}}\right)^2}$$

X1S and X2S are typically about 5% of the $X_{\rm m}$. $R_{\rm s}$ and $R_{\rm r}$ are typically about 0.5% of the $X_{\rm m}$.

Current measurement of the grid-side converter

The main circuit of the grid-side converter is shown below. Current is fed to the LCL filter to compensate the capacitors in no-load situations when current at the input to the converter (point a) is zero. However, as current is measured at the input of the grid-side converter (point b), the line current measurement signal indicates compensated current also in no-load situations. The grid-side converter actual signal 01.06 LINE CURRENT indicates no-load current and differs from the measured grid current.

Example


ABB wind turbine generator 3.05 MW, stator voltage 12 kV, 60 Hz $\,$

	Generator type code	AML 630L6A BAFT									
	Generator type	Slip ring generator									
	Mounting designation	IM 1001									
	Protected by enclosure/slip ring unit	IP 54/23									
	Method of cooling	IC 616									
	Insulation	Class F									
	Standards	IEC									
	Ambient temperature	-20 °C+50 °C									
		-30 °C+50 °C									
	Altitude, max.	1000 m.a.s.l.									
	Doubly-fed operation										
	Duty type	S1									
	Temp. rise	F (RES)									
	Connection of stator winding	Star									
	Rated output	3050 kW									
Par. 99.12	Rated power factor	1.0									
Par. 99.02	Voltage	12 kV									
Par. 99.04	Frequency	60 Hz									
	Speed	1320 rpm									
Par. 99.03	Stator current	134 A									
Par. 99.15	Open circuit voltage	1722 V									
	Rotor voltage	177 V									
	Rotor current	989 A									
	Efficiency at rated load with fan	96.1%									
	Connection of rotor winding	Star									
	Rotor resistance/phase	0.0035 ohm									
	Rotor short-circuited										
	Rated torque	-22753 N·m									
Par. 99.06	Load characteristics as induction machine	Load % Current A Efficiency % Power factor									
	(2770 kW)	100 156 96.4 0.86									
		75 120 96.4 0.83									
		50 87 95.9 0.77									
	Direction of rotation	Uni-directional									
	Weight of rotor	Approximately 5900 kg									
	Total weight of generator	13470 kg									
	Inertia rotor / load	Approximately 400 kgm ²									
	Bearings	Antifriction									

AML 630L6A BAFT

	Running	
Par. 99.21	Stator resistance R ₁ (120 °C)	0.42756 ohm
Par. 99.22	Stator reactance X ₁	4.4324 ohm
Par. 99.24	Magnetizing reactance X _m	177.59 ohm
	Starting	
	Stator resistance R ₁ (60 °C)	0.39143 ohm
	Stator reactance X ₁	4.3061 ohm
	Ambient condition	
	Stator resistance R ₁ (50 °C)	0.34346 ohm
	Running	
Par. 99.25	Rotor resistance R ₂ (120 °C)	0.22680 ohm
Par. 99.23	Rotor reactance X_2	5.8101 ohm
	Iron loss resistance R _{Fe}	5.13 ohm
	Starting	
	Rotor resistance $R_2^{'}$ (60 °C)	0.22678 ohm
	Rotor reactance X_2	5.6445 ohm
	Ambient condition	
	Rotor resistance $R_2^{'}$ (50 °C)	0.19899 ohm

Equivalent circuit corresponding to star connection

Permanent loading points:

U [V]	F [Hz]	N [rpm]	P [kW]	p.f.	S [kVA]	lr [A]	Ur [V]	Max. time	Max. amb.
12000	60	1320	3150	0.95cap.	3300	1168*	192	Continuous	50 °C
12000	60	1320	3300	1	3300	1063	179	Continuous	50 °C

* Par. 99.16

However, if higher current is needed to use for a short period (defined by the supplier of the generator), a higher limit can be used. The PLC must supervise the temperatures of the generator and avoid overheating it.

90 Practical examples

Transient loading points (load cycle transient time / 60 min) refer to specification PDC0198 (revision G, chapter 7.3, page 12).

U [V]	F [Hz]	N [rpm]	P [kW]	p.f.	lr [A]	Ur [V]	Tran. time	Max. amb.
11760	60	1260	3380	1	1157	83	10 min	50 °C
12000	60	1260	3380	1	1138	85	10 min	50 °C
12240	60	1260	3380	1	1119	86	10 min	50 °C
11760	60	1320	3545	1	1158	174	10 min	50 °C
12000	60	1320	3545	1	1139	178	10 min	50 °C
12240	60	1320	3545	1	1120	181	10 min	50 °C
11760	60	1380	3875	1	1207	266	10 min	50 °C
12000	60	1380	3875	1	1187	271	10 min	50 °C
12240	60	1380	3875	1	1167	277	10 min	50 °C

Start up data	Setting	Unit	Generator data
99.02 MOTOR NOM VOLTAGE	12000	V	Voltage
99.03 MOTOR NOM CURRENT	134	A	Stator current
99.04 MOTOR NOM FREQ	60	Hz	Frequency
99.05 MOTOR NOM SPEED	1205.2	rpm	Calculated (see above)
99.06 MOTOR NOM POWER	2773	kW	Calculated (see above)
99.12 MOTOR NOM COSFII	1	-	Rated power factor
99.14 MOTOR SYNC SPEED	1200	rpm	Selected for 6 poles at 60 Hz
99.15 MOTOR OPEN CKT V	1722	V	Open circuit voltage
99.16 MOTOR NOM IM	1168	A	In this example, the value in the table for
			permanent loading points (see above) is used.
99.21 Rs	427.56	mohm	Stator resistance R ₁ (120 °C)
99.22 X1S	4432.4	mohm	Stator reactance X ₁
99.23 X2S	5810.1	mohm	Rotor reactance X ₂
99.24 XM	177590	mohm	Magnetizing reactance X _m
99.25 Rr	226.8	mohm	Rotor resistance R ₂ (120 °C)
99.26 XM CALIBRATED	N/A	mohm	Estimated by the firmware – do not set.
99.27 MAX MEAS FLUX	44.35224	Wb	Calculated
99.28 MAX MEAS IS	-329.2687	A	Calculated

ABB Drives communication profile

The following sections show control sequence examples using the ABB Drives communication profile. The Main Control Word (MCW) is the principal means of controlling the converter from WTC. The Control Word is sent to the converter by the WTC. The converter switches between its states according to the bit-coded instructions of the Control Word. The Main Status Word (MSW) contains status information, sent to the WTC by the converter.

Starting sequence

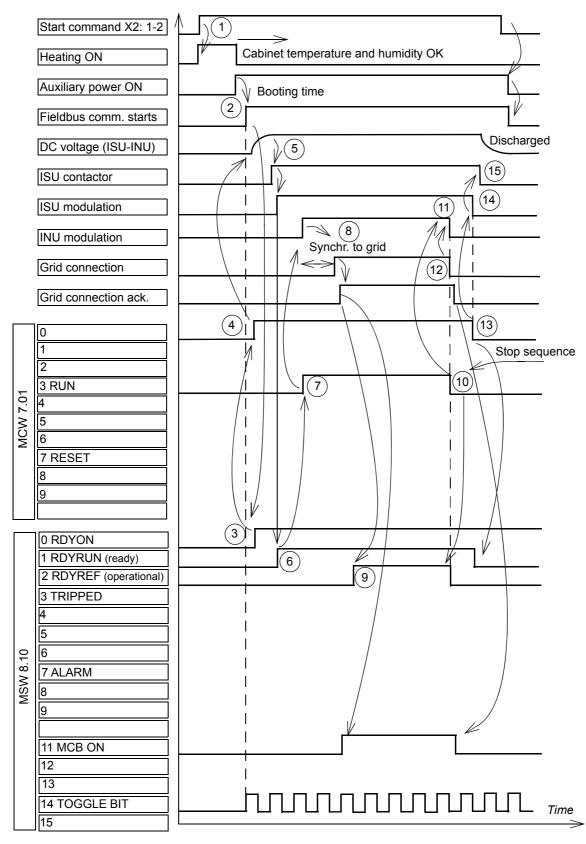
See section Starting sequence on page 67.

Fault sequence, profile B

An example of the control sequence after a fault situation is described below.

Step	Command / end state	Description	8.10 CCU STATUS WORD bits after command										7.01 MAIN CONTROL WORD						
					MCB ON	Low voltage for ride through	remote	torque reduction	alarm	crowbar triggered		OFF 2 N STA	tripped	rdyref	rdyrun	rdyon		RUN	NO
			b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	b7	b3	b0
1	RUN=1	Device is running.	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	1	0
2		Device is tripped for any reason, stator is immediately disconnected from the grid and after that ISU is disconnected from the grid.	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0
3	RUN=0	Run command must be removed.	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0
4	RESET=1	Fault is reseted.	0	0	0	0	1	0	0	0	0	1	0	0	0	1	1	0	0
5	RESET=0	RESET command must be removed.															0	0	0

Device is ready for restart.


Normal stop sequence, profile B

An example of the control sequence after a normal stop is described below.

Step	Command / end state	Description	8.10	CCU	I STA	TUS	WOF	D bit	s aft	er co	mma	nd						MAI NTRO RD	
					MCB ON	Low voltage for ride through	remote	torque reduction	alarm	crowbar triggered		OFF 2 N STA	tripped	rdyref	rdyrun		RESET	RUN	NO
			b13		b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	b7	b3	b0
1	RUN=1	Device is running.	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	1	0
2	RUN=0	Device is requested to stop. Stator current is controlled to zero, stator is disconnected from the grid and both INU and ISU modulation is stopped and ISU is disconnected from the grid.	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0
3	RUN=0	When speed is below SWITCH- OFF speed.	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0

Starting sequence when the grid-side converter is started first separately

ABB Drives profile

Normal start and stop sequence, ABB drives profile

An example of the control sequence is described below.

Step	Command / end state	Description	8.10 CCU STATUS WORD bits after command											7.01 MAIN CONTROL WORD					
			ISU RDYREF	MCB internal trip	MCB ON	Low voltage for ride through	remote	torque reduction	alarm	crowbar triggered	1	OFF 2 N STA	tripped	rdyref	rdyrun	rdyon	RESET	RUN	ON
			b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	b7	b3	b0
1	RUN, ON = 0	Device is at a standstill, no fault.	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0
2	ON=1	DC bus is charged, ISU contactor is closed and ISU modulation is started.	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1
		When speed is above SWITCH- ON speed.	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1
3	RUN=1	INU is started, synchronised to the grid and stator is connected to the grid.	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	1	1
4	RUN=0	Stator current is controlled to zero, stator is disconnected from the grid and INU modulation is stopped.	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0
5	ON=0	ISU modulation is stopped, ISU contactor is opened and DC bus is discharged.	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0
6		When speed is below SWITCH- OFF speed.	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0

Datasets

The datasets used for transmitting and receiving actual signals and parameters are shown in *ACS800-67(LC) doubly-fed induction generator control program firmware manual* [3AUA0000071689 (English)].

Fieldbus signals

For signals used in the software interface with a specific fieldbus, refer to the software interface specification delivered with the converter.

Configuring the NETA-01 Ethernet Adapter Module

Configure the NETA-01 Ethernet Adapter Module as follows:

- Follow instructions given in chapter Quick start-up guide in NETA-01 Ethernet adapter module user's manual [3AFE64605062 (English)] to connect to the module. The instruction on setting the IP address is given below.
 Set the IP address of the NETA module with ARP protocol commands. The PC has to be configured for the point-to-point connection.
 - Set all configuration DIP switches to OFF position. Switch the auxiliary 24 V DC power on.
 - Open the DOS prompt on the PC.
 - Type 'arp -s <IP address> <MAC address>' Substitute <MAC address> with the MAC address of your module eg, 00-30-11-02-02-90. The MAC address is printed on the label on the side of the module. Substitute <IP address> with the IP address you want to use for the module eg, 10.0.0.7. Ask your network administrator for a free IP address. Type 'arp' at the command prompt for more instructions.
 - Type 'ping <IP address>'
 - Type 'arp -d <IP address>'

The module will adopt the IP address specified in the `arp -s' command after restarting the module.

- 2. Open the web pages of the module as follows:
 - Open the Web browser eg, Internet Explorer.
 - Write http:// and the IP address into the browser's address bar and press Enter.
 - Fill in the authorization information. User name: admin. Password: admin.

- 3. Access the **Configuration** menu.
- 4. Open the **Drives** tab and click the **Find drives** button. Make sure that the **Issue channel address** check box is ticked.
- 5. Change the **State** field of the activated converters from FBA DSET to FBA DSET10 and give appropriate names to the converters in the **Name** fields.
- 6. Check that the **Allow dataset editing** and **Enable Motor control applet** check boxes are not ticked.

Drives	Network Dat	taset Scann	ning Param	eters Ad	vanced	d Options				
	Find drives	IV Is	sue channel	address						
Drive 1			Drive 6							
State:	FBA DSET10	Addr: 11	State:	Disabled	~	Addr:				
Name:	ROTOR-SIDE CO	NVERTER	Name:			1				
Drive 2			Drive 7							
State:	FBA DSET10	Addr: 21	State:	Disabled	~	Addr:				
Name:	GRID-SIDE CON	VERTER	Name:							
Drive 3			Drive 8	Drive 8						
State:	Disabled	Addr:	State:	Disabled	~	Addr:				
Name:			Name:							
Drive 4			Drive 9							
State:	Disabled	Addr:	State:	Disabled	~	Addr:				
Name:			Name:			1				
Drive 5										
State:	Disabled	Addr:	Allow	/dataset.ed	itina					
Name:	1		S. Howers	le Motor con	- E					

- 7. Go to the **Network** tab and check that the **Connected to Tool Channel (Ch3)** is selected.
- 8. If the converter has only one rotor-side converter and one grid-side converter, select network type **Ring**.
- 9. Save settings by clicking **OK** and rebooting the module.

			figuration	1	
ives	Network	Dataset Sca	nning Parameter	s Adva	nced Options
Ethe	rnet				
	Ethernet S	ettings	Ethernet DD	CS Port:	46823
Mod DDC IV C	onnected to Baudrate: twork Type- Ring	ess: *.*.*)) 124	disabled)	

Converters with one rotor-side converter and one grid-side converter

Creating a full Backup Package and saving it in .BPG format

While creating a Backup Package, the converter must be in remote control (not controlled from the DriveWindow).

Make a Backup Package with DriveWindow separately from each converter as follows:

- 1. Open a new backup folder by selecting from the File menu System Software / New / Backup Package.
- 2. Select from the File menu System Software / Backup command.
- 3. Select the appropriate converter and press Backup.
- 4. The backing up takes a few minutes.
- 5. Select from the File menu **System Software / Save as** command. Select a folder where you will save the Backup Package.
- 6. Give a file name to your Backup Package and press **Save**.
- 7. Close your folder by selecting from the **File** menu **System Software** / **Close** command.

Eile Edit View Workspace • Parameters • System Software • Graph • Printer Setup • Status Refresh • Exit •	<u>N</u> ew <u>O</u> pen <u>C</u> lose <u>S</u> ave Save <u>A</u> s <u>B</u> ackup	<u>Backup Package</u> Loading Packaga		DriveWindow File Edit View Workspace DriveWindow Parameters DriveWindow System Software DriveWindow Graph DriveWindow Printer Setup Status Befresh Exit Exit	New Open Close Save Save Save As Backup Backup All Restore Download
Select Drives INU 800 1375_7LC {0}{11} Drive names:	0}{11}	A Backup Cancel	Backing up	D 1375_7LC {0}{11} F = left: 1 min 36 sec (31/657 KB lo	Cancel aded)
Graph Status Refresh Exit Exit Fault logg Memory Parameter	Drive Desktop		Save As Save in:	Backup AJXC2300_1375_7LC 2010_06_ Backup Packages (".BPG)	?× ↓ ← È ➡ II. 22.BPG 6 Save ↓ Cancel

Backup Package

A Backup Package is similar to a Loading Package. It is a single PC file with a filename extension of .BPG.

A Backup Package can be opened, saved, saved with a new name and closed. Backup and restore commands can be performed only if a Backup Package is open.

Restoring a backup file into the RDCU or NDCU board

Restore a backup file into the RDCU or NDCU board as follows:

- 1. Select from the File menu System Software / Open command.
- 2. In the **Open** box, select the backup package and press **Open**.
- 3. Select System Software / Restore command.
- 4. Select the converter into which you want to restore the backup file.
- 5. Select the right backup file from the backup folder. (It may contain more than one backup.)
- 6. If you are sure of the restoring, press **Yes**.
- 7. Do not operate the converter or PC during the restoring.

Note: You can not restore any converter while another converter is in local control.

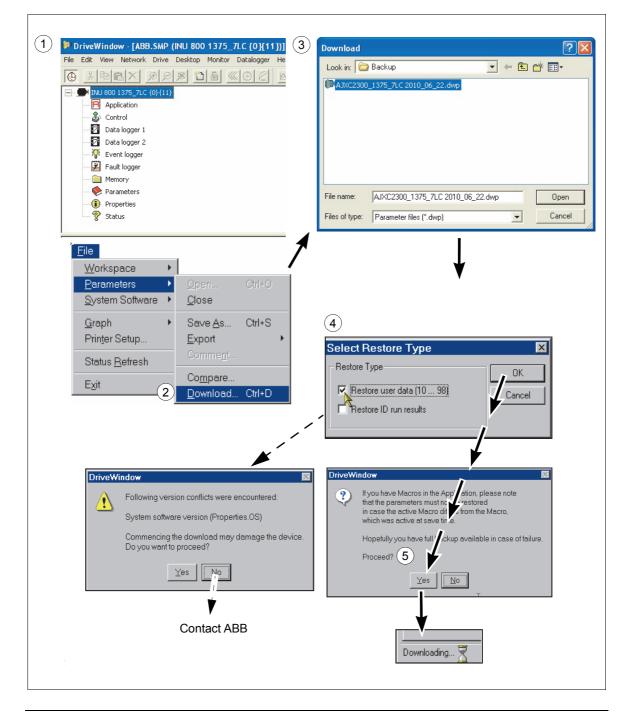
File Edit View Network Drive Desktop Workspace Parameters Network Network Network System Software Network Network Network Graph Close 1 1	Open Image: Constraint of the state o	4.[]
Select Drive INU 800 1375_7LC (0)(11) Drive name: INU 800 1375_7LC (0)(11)	Restore Drive INU 800 1375_7LC {0}{11} from INU 800 1375_7LC {0}{11} Backup: INU 800 1375_7LC {0}{11} Cancel Cancel	el
6 Settings(fipanor)Desktop Note that the operation	o restore drive INU 800 1375_7LC {0}{11} from INU 800 1375_7LC {0}{11} in backup package C:\Documents and \Backup\AJXC2300_1375_7LC 2010_06_22.BPG? reconnects the OPC server and clears the desktop.	

Saving a parameter file (.dwp) to the PC

Save a parameter file to the PC with DriveWindow as follows:

- 1. Select the converter.
- 2. From the **File** menu, select **Parameters** / **Save as** command. If the command is disabled (gray), press the **Drive** / **Take Control** button (a).
- 3. Give a file name, locate the file in your hard disc and press **Save**.
- 4. Write a comment and press OK.

DriveWindow - [ABB.SMP (INU 800 1375_7LC {0}{11}]) Fle Edit View Network Drive Desktop Montor Datalogger Help Deskel Deskel (Deskel) Datalogger 1 Datalogger 1 Datalogger 1 Datalogger 1 Datalogger Fault logger Fault logger		Open Ctrl+O Close Save As Ctrl+S 2
Parameters Properties Status	3	Save As ? X Save in: Backup 4 E * E
File Comment	OK Cancel	File name: AJXC2300_1375_7LC 2010_06_22 Save
		Save as type: Parameter files (".dwp)

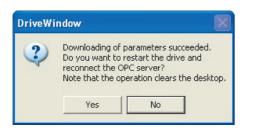

Note: If the converter is running while the parameter file is saved, it will not be possible to edit the parameters off-line. The parameter file remains in the read-only status. Therefore, create always a full Backup Package for backup purposes. See section *Creating a full Backup Package and saving it in .BPG format* on page *96*.

Downloading parameters into the converter

Download parameters into the converter as follows:

- 1. In the remote control mode, select the converter.
- 2. From the File menu, select the Parameters/Download command.
- 3. In the **Download** box, select the backup file and press **Open**.
- Tick "Restore user data (10...98)" for the restore type. Press OK.
 Note: Set parameters into group 99 manually afterwards.
- 5. If you are sure to proceed, press **Yes**. If Version conflict info appears, contact ABB.

Note: After downloading, check the parameters of groups 56 and 58 if an Adaptive Program is in use.



Updating the firmware

- 1. Before updating the firmware it is recommended to create a full Backup Package of the old firmware in RDCU and NDCU boards and save the old parameter file. For details, see sections *Creating a full Backup Package and saving it in .BPG format* and *Saving a parameter file (.dwp) to the PC*.
- Connect the fiber optic connectors to the board to be updated (RDCU or NDCU). Change the node address (70.15 CH3 NODE ADDR) of the board to be updated to 1 or to the same value as the default value in the update package (11 for rotor-side converter, 21 for grid-side converter). Download the new firmware version as instructed in section *Restoring a backup file into the RDCU or NDCU board*.
- Set your converter type. Do the following settings in order to access those parameters: Rotor-side converter
 16.01 PARAM LOCK to OFF
 16.03 PASS CODE to 1
 Grid-side converter
 16.02 PARAMETER LOCK to OPEN
 16.03 PASS CODE to 2303
 A reboot is needed to validate the converter type selected. Switch the auxiliary voltage
 off and back on.
- 4. Download the old parameter file that was saved in step 1. For details, see section *Downloading parameters into the converter*.
- 5. Force the new parameters into FLASH by selecting Yes.

DriveWi	ndow 🛛 🕅
?	Parameters have now been dowloaded into RAM. In the background, the drive will write them into FLASH. Sometimes this can fail quietly. However, you have the option to force the drive to write all parameters into FLASH now. Do you want to force the parameters into FLASH now? Yes No

6. If downloading of the parameters is succeeded, following note appears. Select **Yes**, and the update is ready and the updated board is connected.

If parameter download fails, an error note appears:

DriveWi	ndow 🗵
8	Parameter download failed! Drive may be unusable unless fully restored.
	OK

- 1. Compare the parameters to the parameter settings given in section *Communication parameter settings*.
- 2. Do the start-up checks and settings as instructed in chapters *Start-up with low voltage stator* and *Start-up with medium voltage stator*.

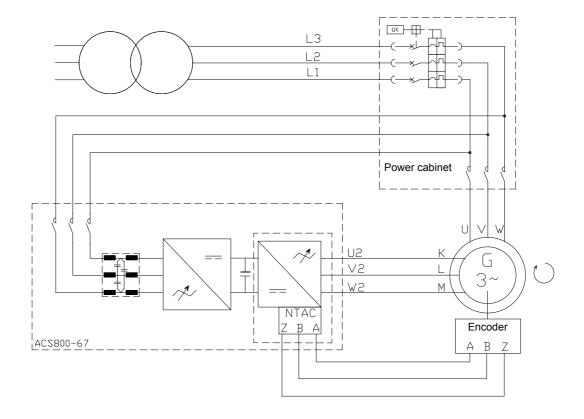
Communication parameter settings

Parameter	Setting	Note
16.20 GRID CONNECT MODE	MCB1+MCB3/B	
31.01 CROWBAR HW TYPE	ACTIVE CB 2 ACTIVE CBs	In case of one crowbar In case of two crowbars
70.15 CH3 NODE ADDR	11	
70.21 CH4 NODE ADDR	11	
97.01 DEVICE NAME	INU 800 xxxx_7LC	Use the correct converter type
99.27 MAX MEAS FLUX	2.43936 2.805279	Default value when using NUIM-62C board To be set manually when using
		NUIM-10C board
99.28 MAX MEAS IS	3293 4116 4939 6585 6585	Set according to power type. See also section <i>NUIM-1x and</i> <i>NUIM-6x current</i> <i>measurements</i> on page 79.

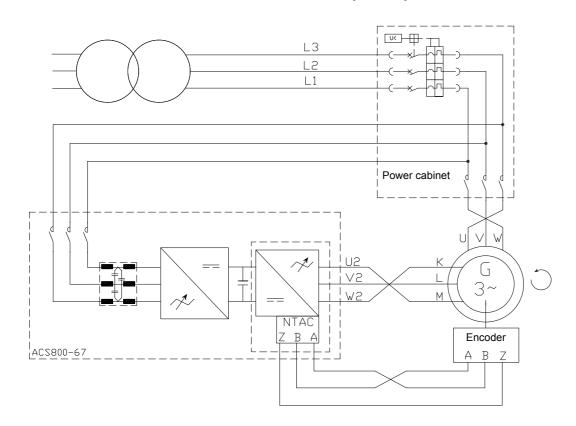
Rotor-side converter

In addition, the fieldbus module settings must be made. See the ACS800-67(LC) doublyfed induction generator control program firmware manual [3AUA0000071689 (English)].

104 Practical examples


Grid-side converter

No.	Name	Factory setting
11.02	Q REF SELECT	2402
70.04	CH0 TIMEOUT	2000 ms (When parameter is set to zero, time is not monitored.)
70.15	CH3 NODE ADDR	2
70.20	CH3 HW CONNECTION	RING
71.01	CH0 DRIVEBUS MODE	NO
90.01	D SET 10 VAL 1	701
90.02	D SET 10 VAL 2	2301
90.03	D SET 10 VAL 3	2402
90.04	D SET 12 VAL 1	15804
92.01	D SET 11 VAL 1	801
92.02	D SET 11 VAL 2	108
92.03	D SET 11 VAL 3	107
92.04	D SET 13 VAL 1	911
92.05	D SET 13 VAL 2	912
92.06	D SET 13 VAL 3	115
92.07	D SET 15 VAL 1	122
92.08	D SET 15 VAL 2	106
92.09	D SET 15 VAL 3	111
92.10	D SET 17 VAL 1	119
92.11	D SET 17 VAL 2	120
92.12	D SET 17 VAL 3	121
92.13	D SET 19 VAL 1	112
92.14	D SET 19 VAL 2	406
92.15	D SET 19 VAL 3	132
92.16	D SET 21 VAL 1	133
92.17	D SET 21 VAL 2	134
92.18	D SET 21 VAL 3	135
93.01	D SET 23 VAL 1	904
93.02	D SET 23 VAL 2	903
98.01	COMMAND SEL	MCW
98.02	COMM MODULE	CASCADE
99.08	AUTO LINE ID RUN	NO (after start-up)


Changing the rotation direction of the generator

General

Terminal markings of the ABB generators for the stator (U, V, W) and rotor (K, L, M) are based on IEC 60034-8. The terminal markings are arranged so that the clockwise rotation is obtained when the alphabetical sequence of the letters (for example U1, V1, W1) corresponds to the time sequence of the system phase voltages. The phase sequence of the secondary winding (for example K, L, M) must correspond to the phase sequence of the primary winding (for example U, V, W). In counterclockwise rotation the time sequence of the system phase voltages are reversed by rearranging the grid cables (for example L2 and L3 in the case of 3-phase cabling). If the rotation direction of the generator is changed, U, V, W are changed to V, U, W. Respectively K, L, M are changed to L, K, M. Grid connections L1, L2, L3 connect to V, U, W and rotor connections U1, V1, W1 connect to L, K, M in counterclockwise rotation.

Clockwise rotation at drive end (D end)

Counterclockwise rotation at drive end (D end)

Downloading the diagnostics of APBU branching unit

APBUDL is a tool program for APBU datalogger control and data upload. It is highly recommended to use the APBUDL program with the RUSB-01 adapter. With following instructions the datalogger file is downloaded for further analysis.

Program file is APBUDL.exe. These files are also needed in the same directory or in the system directory: Dwc_ddcp.dll, amctvb.dll, amctooli.dll.

Status:

- No communication (No communication between PC and APBU board)
- APBU found (Communication OK, logic version of APBU board)
- Status (Status of loggers; if data collection is on: logging. If logger has triggered: data ready)

Commands:

- u = Upload a logger
- t = Trig user logger
- I = Start user logger
- q = Quit

Data upload:

- u = Upload a logger
- Define how many percent of the samples is uploaded (1...100)
- Define which logger is uploaded (F/L/U) [First/Last/User]

Following files will be created:

First Logger: first.csv

Last Logger: last.csv

User Logger: user.csv

Note: Files must be renamed.

Setting the parameters according to grid code

Parameter setting examples in cases of Spanish, Italian and United Kingdom grid codes are given below.

Spanish grid code

Parameter	Setting
Control program AJXC2330 (or newer) parame	eters:
30.05 AC OVERVOLT TRIP	793.5 V
30.06 AC UNDERVOLT TRIP	68.9999 V
30.07 AC OVERFREQ TRIP	53 Hz
30.08 AC UNDERFREQ TRIP	47 Hz
31.01 CROWBAR HW TYPE	ACTIVE CB
32.01 GRID SUPPORT MODE	МАХ. Up-p
32.02 RT MONITOR SIGNAL	MIN. Up-p
32.03 RT U/Un LEVEL1	80%
32.04 RT U/Un LEVEL2	9.99999%
32.05 RT U/Un LEVEL 3	70%
32.06 RT U/Un DELTA t1	3000 ms
32.07 RT U/Un DELTA t2	600 ms
32.08 RT U/Un DELTA t3	12000 ms
32.09 RT U/Un DELTA t4	3000 ms
32.10 RT U/Un LEVELHYST	5%
32.11 GS U/Un LEVEL 1	85%
32.12 GS U/Un LEVEL 2	50%
32.13 GS U/Un LEVEL 3	25%
32.14 GS U/Un LEVEL 4	15%
32.15 GS U/Un LEVEL 5	110%
32.16 GS U/Un LEVEL 6	120%
32.17 GS IQREF LEVEL 1	9.99999%
32.18 GS IQREF LEVEL 2	100%
32.19 GS IQREF LEVEL 3	100%
32.20 GS IQREF LEVEL 4	100%
32.21 GS IQREF LEVEL 5	-20%
32.24 GS TIME AFTER DIP	500 ms
32.25 KVAR RISE TIME	120 ms
32.26 TORQUE RISE TIME	99.9999 ms
32.27 TMAX/TN (LVRT)	4.99997%
32.28 TMIN/TN (LVRT)	3.00002%
32.29 RT MAX POWER	100%
32.30 IR MAX PEAK LEVEL	2285.57 A
32.31 IR MAXSLOPE SCALE	507.903 A
32.32 U- / U+ START DIS	45%
32.33 U(RMS) START DIS	9.99999%
32.41 ENVELOPE PAR SEL	PAR 1

Italian grid code

Parameter	Setting	
Control program AJXC2330 (or newer) param	eters:	
4.04 DEVICE ID	INU 800 1160_7NC	
20.23 USER KVAR LIMIT	100%	
30.05 AC OVERVOLT TRIP	828	
30.06 AC UNDERVOLT TRIP (2) (V)	69	
30.07 AC OVERFREQ TRIP	53 Hz	
30.08 AC UNDERFREQ TRIP	47 Hz	
30.15 DLYED AC OV TRIP (V)	759	
30.16 AC OV TRIP DLY (s)	1.5	
31.01 CROWBAR HW TYPE	ACTIVE CB	
32.01 GRID SUPPORT MODE	МАХ. Up-p	
32.02 RT MONITOR SIGNAL	MIN. Up-p	
32.03 RT U/Un LEVEL1 (1)	85%	
32.04 RT U/Un LEVEL2 (4)	10%	
32.05 RT U/Un LEVEL 3 (5)	75%	
32.06 RT U/Un DELTA t1 (6) (ms)	800	
32.07 RT U/Un DELTA t2 (3) (ms)	500	
32.08 RT U/Un DELTA t3 (8) (ms)	2000	
32.09 RT U/Un DELTA t4 (ms)	0 ms	
32.10 RT U/Un LEVELHYST (7)	10%	
32.11 GS U/Un LEVEL 1	90%	
32.12 GS U/Un LEVEL 2	80%	
32.13 GS U/Un LEVEL 3	25%	
32.14 GS U/Un LEVEL 4	15%	
32.15 GS U/Un LEVEL 5	110%	
32.16 GS U/Un LEVEL 6	120%	
32.17 GS IQREF LEVEL 1	0%	
32.18 GS IQREF LEVEL 2	112%	
32.19 GS IQREF LEVEL 3	112%	
32.20 GS IQREF LEVEL 4	112%	
32.21 GS IQREF LEVEL 5	-20%	
32.22 GS IQREF LEVEL 6	-40%	
32.23 GS AFTER DIP	0%	
32.24 GS TIME AFTER DIP	0 ms	
32.25 KVAR RISE TIME	50 ms	
32.26 TORQUE RISE TIME	50 ms	
32.27 Imax/In (LVRT)	124%	
32.28 TMIN/TN (LVRT)	1%	
32.29 lp max/ln (LVRT)	118%	
32.30 IR MAX PEAK LEVEL	1777.66 A	
32.31 IR MAXSLOPE SCALE	507.903 A	
32.32 U- / U+ START DIS	80%	
32.33 U(RMS) START DIS	10%	
32.34 RT U/Un DELTA t5 (10) (s)	3	

110 Practical examples

Parameter	Setting	
32.35 PRIORITY t <t4< td=""><td>lq > lp</td></t4<>	lq > lp	
32.36 PRIORITY t>t4	lq > Power	
32.37 P/Q UNSYM DIS	62%	
32.38 P/Q UNSYM ENA	60%	
32.41 ENVELOPE PAR SEL	PAR 2	
32.66 RT OF LEVEL1	51.5	
32.67 RT OFTIME1	1.5	
32.68 RT OF LEVEL2	51.5	
32.69 RT OF TIME2	1.5	
32.70 RT OF LEVEL3	51.5	
32.71 RT OF TIME3	1.5	
32.72 RT OF LEVEL4	51.5	
32.73 RT OF TIME4	1.5	
32.74 RT OF LEVEL5	51.5	
32.75 RT UF LEVEL1	47.5	
32.76 RT UFTIME1	4.5	
32.77 RT UF LEVEL2	47.5	
32.78 RT UF TIME2	4.5	
32.79 RT UF LEVEL3	47.5	
32.80 RT UF TIME3	4.5	
32.81 RT UF LEVEL4	47.5	
32.82 RT UF TIME4	4.5	
32.84 RT UF LEVEL5	47.5	
146.15 UC TRQREF OFF LVL 1250 V	1200V	
146.16 MAX AUTO-RESTART 25	25	
146.20 CB OV TRIP LEVEL 0 V	0	

UK grid code

Parameter	Setting
Control program AJXC2330 (or newer) parameter	eters:
30.03 EARTH FAULT LEVEL	3
30.04 STATOR CURR TRIP	0 A
30.05 AC OVERVOLT TRIP	793.5 V
30.06 AC UNDERVOLT TRIP	0 V
30.07 AC OVERFREQ TRIP	53 Hz
30.08 AC UNDERFREQ TRIP	47 Hz
32.01 GRID SUPPORT MODE	MAX. Up-p
32.02 RT MONITOR SIGNAL	MIN. Up-p
32.03 RT U/Un LEVEL1	90%
32.04 RT U/Un LEVEL2	15%
32.05 RT U/Un LEVEL 3	80%
32.06 RT U/Un DELTA t1	1200 ms
32.07 RT U/Un DELTA t2	140 ms
32.08 RT U/Un DELTA t3	2500 ms
32.09 RT U/Un DELTA t4	140 ms
32.10 RT U/Un LEVELHYST	5%
32.11 GS U/Un LEVEL 1	90%
32.12 GS U/Un LEVEL 2	80%
32.13 GS U/Un LEVEL 3	25%
32.14 GS U/Un LEVEL 4	15%
32.15 GS U/Un LEVEL 5	110%
32.16 GS U/Un LEVEL 6	120%
32.17 GS IQREF LEVEL 1	0%
32.18 GS IQREF LEVEL 2	112%
32.19 GS IQREF LEVEL 3	112%
32.20 GS IQREF LEVEL 4	112%
32.21 GS IQREF LEVEL 5	-20%
32.22 GS IQREF LEVEL 6	-40%
32.23 GS AFTER DIP	0%
32.24 GS TIME AFTER DIP	0 ms
32.25 KVAR RISE TIME	50 ms
32.26 TORQUE RISE TIME	49.9988 ms
32.27 Imax/In (LVRT)	124%
32.28 TMIN/TN (LVRT)	0.999975%
32.29 lp max/ln (LVRT)	118%
32.30 IR MAX PEAK LEVEL	1777.68 A
32.31 IR MAXSLOPE SCALE	507.903 A
32.32 U- / U+ START DIS	80%
32.33 U(RMS) START DIS	9.99999%
32.34 RT U/Un DELTA t5	180 s
32.35 PRIORITY t <t4< td=""><td>lq > lp</td></t4<>	lq > lp
32.36 PRIORITY t>t4	lp > lq
32.37 P/Q UNSYM DIS	62%

112 Practical examples

Parameter	Setting
32.38 P/Q UNSYM ENA	60%
Control program IWXR7300 (or newer) pa	arameters:
40.01 RT ENABLE	ON
40.02 NAMU BOARD ENABLE	ON
40.04 PHASE MEAS ENA	ON
40.05 UAC CTRL SEL	RMS VOLTAGE
40.09 RT U/Un MOD STOP	9.99999%
40.10 RT U/Un LEVEL1	90%
40.11 RT U/Un LEVEL2	0%
40.12 RT U/Un LEVEL3	70%
40.13 RT U/Un DELTA t1	3000 ms
40.14 RT U/Un DELTA t2	600 ms
40.15 RT U/Un DELTA t3	20000 ms
40.20 TRP VOLT PEAK	130%
40.21 TRP VOLT LEV	120%
40.22 TRP VOLT TIME	20 ms
40.23 TRP VOLT SEL	RMS VOLTAGE
41.01 GRID SUPPORT MODE	OFF
41.02 GS HIGHEST U ENA	ON
41.03 GS U/Un LEVEL 1	100%
41.04 GS U/Un LEVEL 2	50%
41.05 GS U/Un LEVEL 3	25%
41.06 GS U/Un LEVEL 4	15%
41.07 GS IQREF LEVEL 1	0%
41.08 GS IQREF LEVEL 2	100%
41.09 GS IQREF LEVEL 3	100%
41.10 GS IQREF LEVEL 4	100%

Tracing the source of warnings, limits and faults

What this chapter contains

This chapter describes the warnings, limits and faults of the converter and refers to descriptions of the warning and fault messages and LEDs given in other manuals.

Warnings

Abnormal statuses are indicated by the warning words and messages.

Limits

The converter control programs limit, for example, current, torque, power, speed and overvoltage. The performance of the limiters can be controlled by parameters.

Torque limit

The converter calculates shaft torque every 25 microsecond.

Torque is typically limited when

- the limit defined by parameter 20.05 USER POS TORQ LIM is met
- some factor in the torque reference chain requires it.

Power limit

Parameters 20.17 P MOTORING LIM and 20.18 P GENERATING LIM define the maximum allowed power flows.

Faults

The converter protects itself with many functions. When a protection function is activated, the converter is immediately stopped (tripped) to avoid damages. A fault does not necessary mean that there is any material failure in the converter.

How to identify the fault and what to do in a specific fault situation

Both RMIO and NDCU board contains a fault logger. The latest faults and warnings are stored together with the time stamp at which the event was detected. The fault logger collects 64 of the most recent available pieces of information concerning faults (such as fault, warning, reset and system messages) into the fault buffer in the RAM memory. The latest 16 inputs are stored to the flash memory at the beginning of an auxiliary power supply loss if an internal +24 V power supply is used.

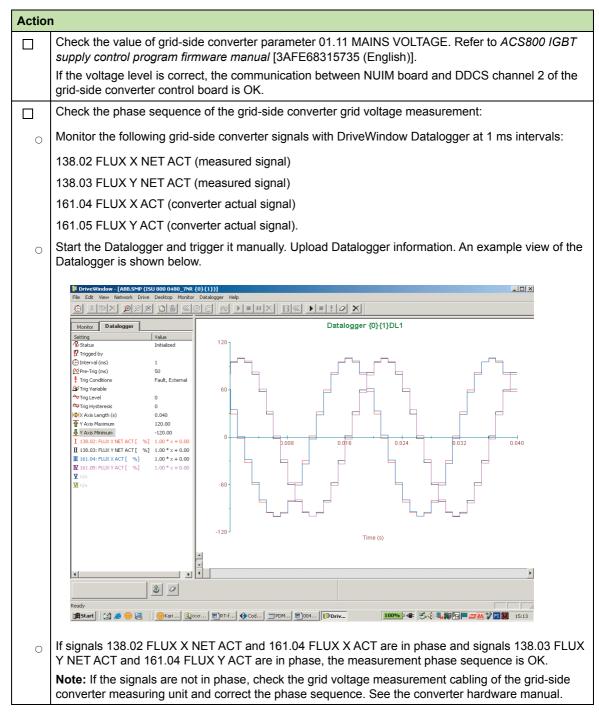
Both RMIO and NDCU board also contains data loggers 1 and 2. They are used to monitor signals and to store them for later retrieval and analysis. The contents of the data loggers are stored to the RAM memory.

The fault logger can be browsed in DriveWindow under the **Fault** tab and the data loggers under the **Data logger** tab. For more information, refer to *DriveWindow user's manual* [3BFE64560981 (English)].

Compare the warning and fault messages of the fault logger to the messages listed in the firmware manual. Most warning and fault causes can be identified and corrected using the information in the fault tracing tables.

Before contacting ABB, see section Further information on page 12.

Warning and fault messages


Refer to

- ACS800 IGBT supply control program firmware manual [3AFE68315735 (English)]
- ACS800 grid-side control program firmware manual [3AUA0000075077 (English)]
- ACS800-67(LC) doubly-fed induction generator control program firmware manual [3AUA0000071689 (English)].

Checking the phase sequence of grid-side converter voltage measurement

NUIM board in use (grid-side converter control program IXXR72xx)

If an OVERCURRENT fault occurs during the start-up when the operation of the converter is tested, or if the grid fault ride-through function fails, make the checks described in the table below.

NAMU / BAMU board in use (grid-side converter control program IWXR74xx)

If an OVERCURRENT fault or GRID SYNC FAIL fault occurs during the start-up when the operation of the converter is tested, or if the grid fault ride-through function fails, make the checks described in the table below.

Action	n				
	Check the value of grid-side converter parameter 01.11 MAINS VOLTAGE. Refer to <i>Grid-side control</i> program for ACS800 wind turbine converters firmware manual [3AUA0000075077 (English)].				
	If the voltage level is correct, the communication between NAMU / BAMU board and DDCS channel 2 of the grid-side converter control board is OK.				
	Check the phase sequence of the grid-side converter grid voltage measurement:				
0	Monitor the following grid-side converter signals with DriveWindow Datalogger at 1 ms intervals:				
	02.22 FLUX X NET ACT (measured signal)				
	02.23 FLUX Y NET ACT (measured signal)				
	02.20 FLUX X ACT (converter actual signal)				
	02.21 FLUX Y ACT (converter actual signal).				
0	Start the Datalogger and trigger it manually. Upload Datalogger information. An example view of the Datalogger is shown below.				
Monitor	Datalogger {0}{2}DL1				
II 02.21: FL	ms) 1 ms) 0 Holons Fault be 50- resis 0 spath (s) 0.100 minum 100.00				
	If signals 02 22 ELUX X NET ACT and 02 20 ELUX X ACT are in phase and signals 02 23 ELUX X				
0	 If signals 02.22 FLUX X NET ACT and 02.20 FLUX X ACT are in phase and signals 02.23 FLUX Y NET ACT and 02.21 FLUX Y ACT are in phase, the measurement phase sequence is OK. 				
	Note: If the signals are not in phase, check the grid voltage measurement cabling of the grid-side converter NAMU / BAMU board and correct the phase sequence. See the converter hardware manual.				

Faults in measurements

Fault	Cause	What to do
Pulse encoder pulses or zero pulse are missing or wrong	Generator overcurrent fault	If the encoder is of unisolated type, check that the cable is grounded only on converter side.
	Speed / position / RTAC module fault	In case of wrong encoder direction, check the pulse encoder phasing (A/B channels).
		Check the type and connection of the encoder; differential encoder is recommended.
Current value is wrong.	Faulty current	Check the current transformer.
Torque actual value does not correspond to the reference	transformer inside power module	Check the values in parameter group 99.
value.	Wrong values in	
There is reactive power without reference.	parameter group 99 in the rotor-side converter	
Torque oscillates and overcurrent fault occurs.	control program	
Current imbalance fault		
Earth fault		

118 Tracing the source of warnings, limits and faults

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to <u>www.abb.com/searchchannels</u>.

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals

Your comments on our manuals are welcome. Navigate to <u>new.abb.com/drives/manuals-feedback-form</u>.

Contact us

www.abb.com/windconverters

3AUA0000095094 Rev B (EN) 2017-12-31

