

ABB Robotics

IRB 8700 Highest payload robot

Content

Introduction

- Targeted applications
- Key differentiators
- Technical data
- Summary

Introduction Differentiated value proposition

- Lower Total Cost of Ownership (TCO)
 - Design focused on uptime and reliability
 - Reduced maintenance
- 25 % faster than any competitor in its size

Introduction Fit in ABB product range Reach up to 3.5 m **IRB 8700** 550-800 kg 3.5-4.2 m IRB 7600 150-500 kg 2.55-3.5 m

Introduction IRB 8700

Introduction Variants

IRB 8700 550/4.2

- Payload 550 kg
 - 620 kg with wrist down
 - 475 kg with LeanID
- Moment of inertia 725 kgm²
- Reach 4.2 m
- Additional arm load 50 kg

IRB 8700 800/3.5

- Payload 800 kg
 - 1000 kg with wrist down
 - 630 kg with LeanID
- Moment of inertia 725 kgm²
- Reach 3.5 m
- Additional arm load 50 kg

Overview With LeanID

IRB 8700 550/4.2

- Payload 475 kg
 - 660 kg with wrist down
- Moment of inertia 725 kgm²
- Reach 4.2 m
- Additional arm load 100 kg

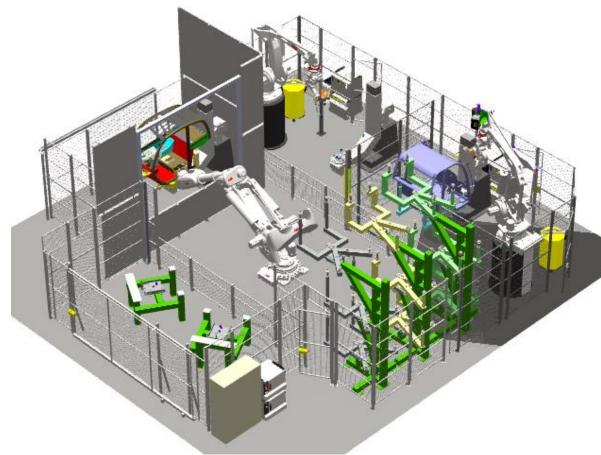
IRB 8700 800/3.5

- Payload 630 kg
 - 930 kg with wrist down
- Moment of inertia 725 kgm²
- Reach 3.5 m
- Additional arm load 100 kg

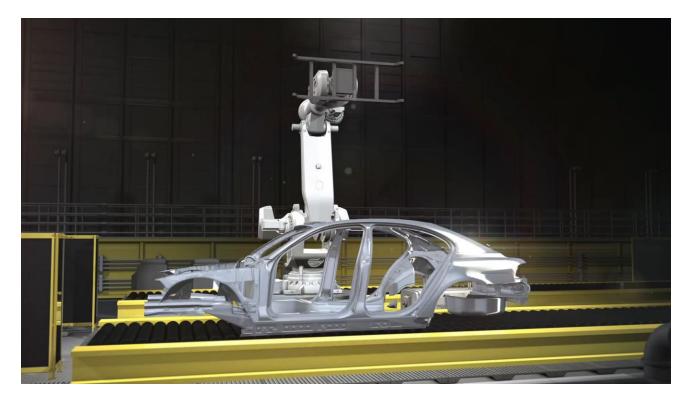
Introduction Lower TCO: Payloads standard and LeanID

	IRB 8700	IRB 8700 Lean ID
Payload range (kg)	550-800	475-630
Reach range (m)	3.50-4.20	3.50-4.20
Variants	550 kg / 4.20 m 800 kg / 3.50 m	475 kg / 4.20 m 630 kg / 3.50 m

Lowest TCO Difference between variants: An arm extender


Content Target application

- Introduction
- Targeted applications
- Key differentiators
- Technical data
- Summary


Target applications Material Handling

- Tractor cabin moved between welding station by an IRB 8700
- Shortest cycle times a key feature in this application

Target applications Materials Handling

- Large car body moved between transfer lines
- High uptime and running quality a key feature in highly automated expensive car lines

Content Key differentiators

- Introduction
- Targeted applications
- Key differentiators
- Technical data
- Summary

Key differentiators

Lowest Total Cost of Ownership

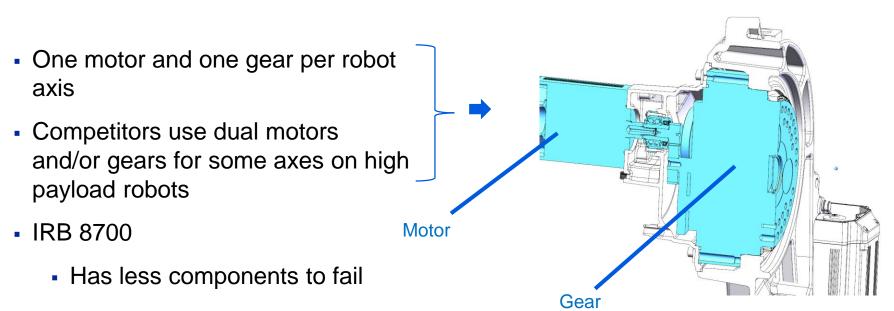
- Outstanding reliability
- LeanID on both variants
- Long maintenance intervals and easy service
- Many components shared with IRB 6700 reduces # service procedures and # of spare parts

Faster

 By far the fastest high payload robot – 25% faster than competitors

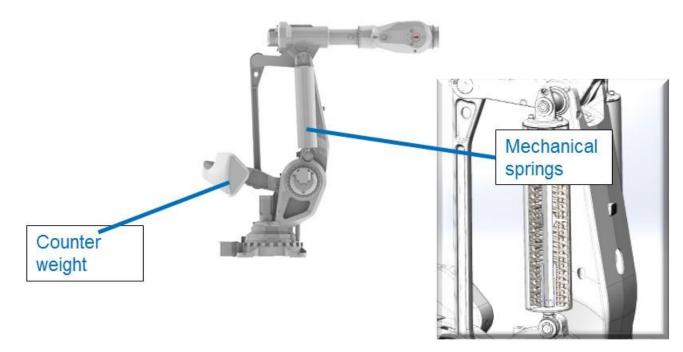
Sustainable

- No use of hazardous materials Used materials within environmental directives (RoHS 2002/95/EC and Reach No1907/2006 directives)
- Modern components from world class suppliers to secure availability of spare parts


Key differentiators Lowest TCO: outstanding reliability

- Straight forward and uncomplicated design using world class components
 - One motor and gear per robot axis
 - Counter balancing only with mechanical springs and counterweight – no gas springs used
- LeanID for best dress pack endurance
- Foundry Plus 2 protection as standard

Key differentiators Lowest TCO: uncomplicated and straightforward design



- Gets shorter cycle times and higher accuracy
- Less difficult to service

ABB

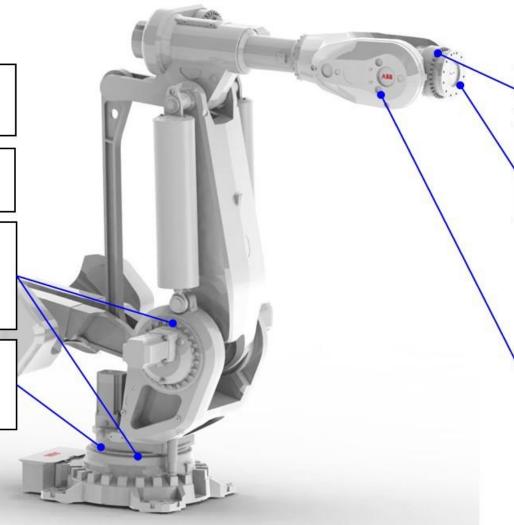
Axis 3

Key differentiators Lowest TCO: most robust, no gas balancing cylinder

- No gas springs used Very reliable counter weight and mechanical springs for counter balancing
- Gas springs (used by some competitors) can leak and may cause safety problems

Key differentiators Lowest TCO: outstanding reliability

New Axis Calibration => High accuracy and Easy to Use


Improved sealing output shaft for gears axes 2.3 and 6

Complete machining of all surfaces exposed for gearbox oil ax 1-3

=> reduced risk for oil contamination

Improved upper sealing ring ax 1 with additional O-ring

=> reduces the risk of water getting inside the gear

Improved sealing axis 5 support side

Lean ID dresspack with controlled movements

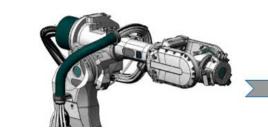
=> less wear and damage of both dresspack and wrist

Fully sealed gearbox / turning disc

=> No oil leakage

Smooth wrist shape and surfaces with recessed screw heads

=> less wear of both dresspack and wrist



Key differentiators Lowest TCO: LeanID, next generation dress packs

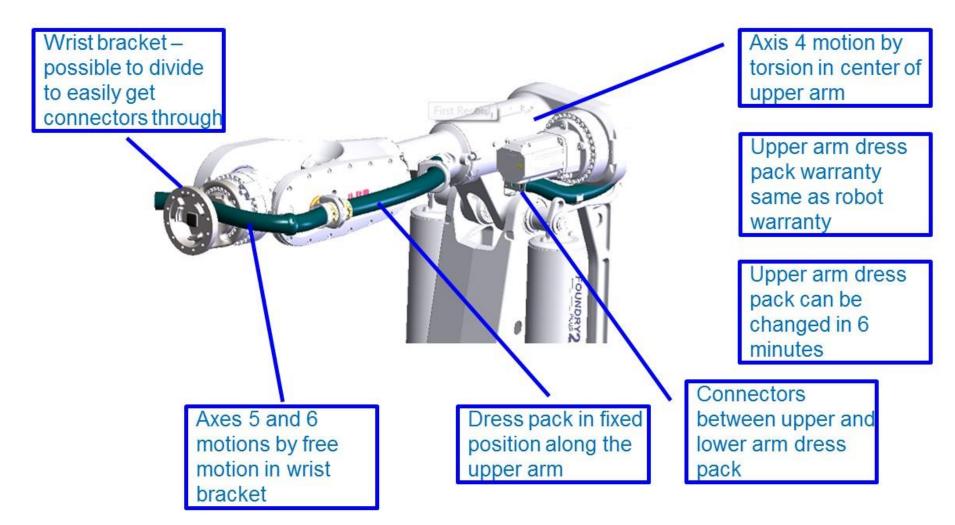
External dress pack

- Low cost
- Scalable solutions for all robot variants available
- Short dress pack life time
- Does not support flexible production – small working range
- Bulky
- Difficult to simulate

Integrated dress pack

- High cost
- Not scalable in size –available for 2 robot variants
- Long dress pack life time
- Supports flexible production working range improved
- Compact
- Easy to simulate
- Unique wrist design with unique spare parts and service procedures

High uptime and flexible production



LeanID dress pack

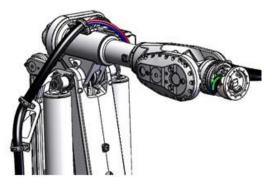
- Medium cost
- Scalable available for all robot variants
- Long dress pack life time
- Supports flexible production best working range
- Compact
- Easy to simulate
- Based on a standard robot => no new spare parts or service procedures
- Shortest time for changing upper arm dress pack

Key differentiators Lowest TCO: LeanID, long lifetime dress pack solution

Key differentiators Lowest TCO: LeanID, future dress pack for complete robot range

IRB 6650S

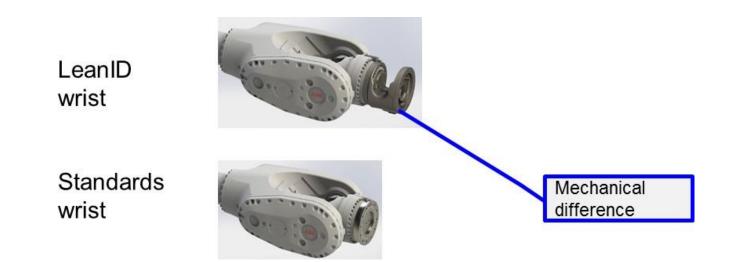
- 2 variants
- Introduction in 15.2



IRB 6700 • 8 variants

IRB 7600

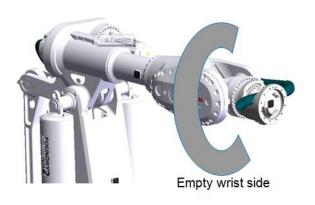
- 3 variants
- Introduction in 16.1



IRB 8700

2 variants

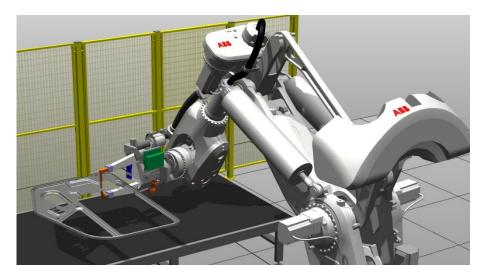
Key differentiators Lowest TCO: LeanID



Design based on trusted design

- No new spare parts
- No new maintenance procedures
- Easy to re-use the robot in any new application

Key differentiators Lowest TCO: LeanID, flexible production by large working range


	Dress pack working range
Axes 4&6	±300° ax 4 and ±220° ax 6 independent of each other
Axis 5	±120°

High dress pack uptime in flexible line concepts

- Many different parts can be produced -Large dress pack working range
- Easy to enter narrow spaces Large dress pack working range enables "empty side" access
- Improved accessibility More compact than traditional external dress packs
- Robot cycle to be tested off line Accurate simulations by well-defined cable motions
- Lean ID on both all robot variants -Standard solution for any application in a line

Key differentiators Lowest TCO: Easy and accurate to simulate off line

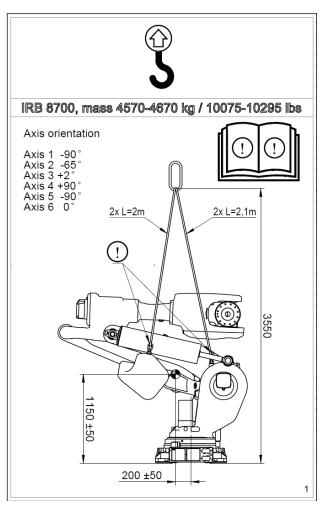
- Dynamic 3D models
 - RobotStudio[®], Delmia V5 Robotics, Process simulate, RobCAD
- Static 3D models
 - IGES, STEP, Parasolid, ACIS
- Layout models
 - DXF, DWG
- Both arm variants available in 4 versions
 - Std
 - MH3
 - LeanID SW
 - LeanID MH

Key differentiators Outstanding reliability

- Straight forward and uncomplicated design using world class components
 - One motor and gear per robot axis
 - Counter balancing only with mechanical springs and counterweight – no gas springs used
- LeanID for best dress pack endurance
- Foundry Plus 2 protection as standard

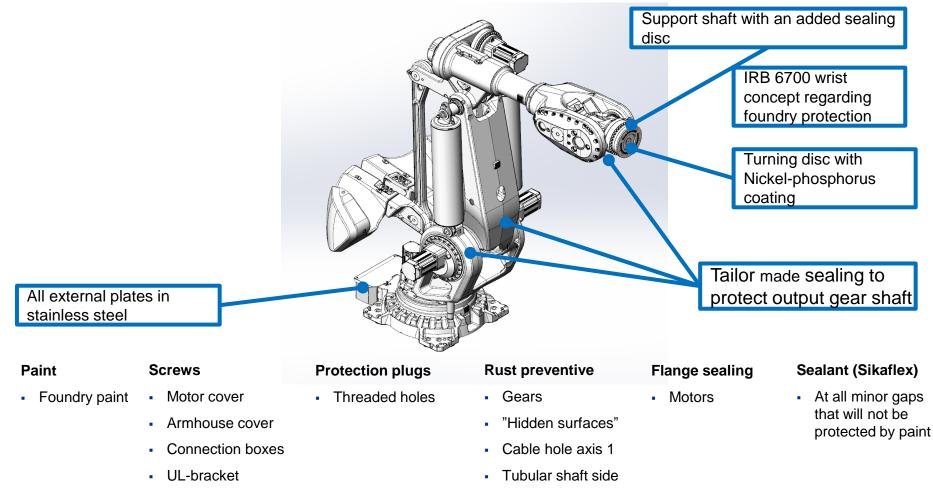
Key differentiator Lowest TCO: outstanding reliability, focus on validation

Extensive validation


Key differentiators Lowest TCO: low maintenance

As an average twice as long time between service

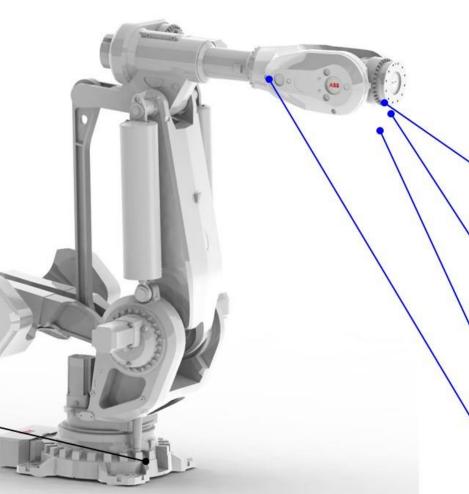
Gear box oil change interval ax 1-3, 6	After 20000 h , quick connections on axes 1-3 to reduce time for draining / filling oil (ref 6000 h+24000 h)
Gear box oil change interval ax 4-5	After 20000 h
Battery change	After 4 years , 3 shift <i>(ref at low alert after 2 years)</i>
Counter balancing cylinders	Lubrication after 4 years, 3 shift (ref 2.5 years)
Gears life time	After 8 years & 3 shift in normal BIW operation an inspection/overhaul is needed
Annual inspection	20 min, Gear box oil levels, harnesses, labels, balancing device, mech. Stops


Key differentiators Lowest TCO: lowest maintenance and easy change of spare parts

- Optimized service procedures
- Based on many design principles and components from IRB 6700
- Easy to use manuals
 - Few cross references makes it easier to read
 - Many illustrative pictures
 - Summaries added describing tools and parts needed and short routine description

Key differentiators Lowest TCO: with Foundry Plus 2 prepared for harsh environments

Key differentiators Lowest TCO: easier and less service


Easy and straightforward design without complex solutions

All motors can be changed without dismounting any structural parts or need for oil drainage

Gear change axes 2, 3 and 6 without dismounting any structural parts

Good lifting possibilities on all heavy parts

Quick coupling ax 1-4 for faster draining and filling of oil

New Axis Calibration

=> High accuracy and Easy to Use

Oil change ax 6 w/o need of dismounting the "frying pan" and dresspack

Exchange of Lean ID upper arm dresspack below 15 minutes

Sync track ax 5 relocated for better visibility when tool is mounted

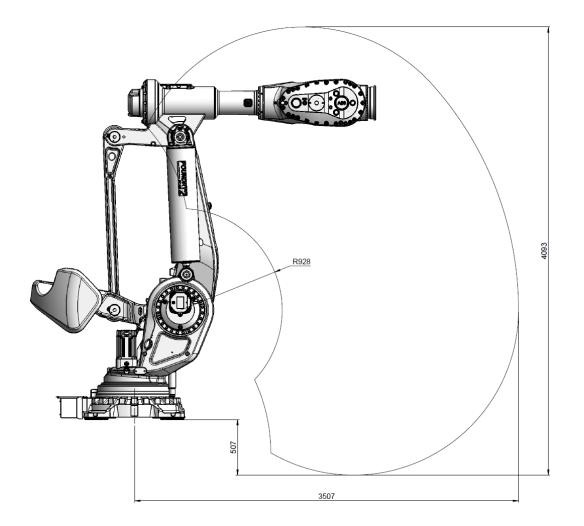
Exchange of motor ax 5 w/o need of dismounting wrist and draining oil

Key differentiators Sustainable: non hazardous materials used

 Complies with environmental directives RoHS 2002/95/EC and Reach No1907/2006 directives

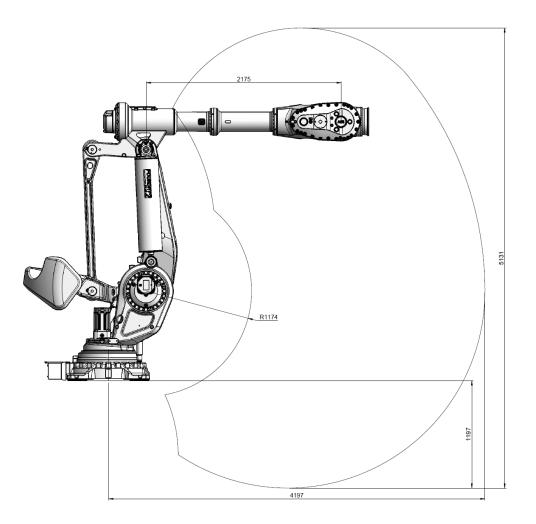
Content Technical data

- Introduction
- Targeted applications
- Key differentiators
- Technical data
- Summary



Technical data

Robot		IRB 8700	
Variant		550/4.2	800/3.9
Payload	kg	550	800
Payload outlay	mm	460	460
LeanID Payload	kg	475	630
LeanID Outlay	mm	460	460
Reach	m	4.2	3,5
Weight	kq	4600	4600
Range ax 1	•	+170°	+170°
Range ax 2	•	+ 90°, - 65°	+ 90°, - 65°
Range ax 3		+132°,-30°	+132°,-30°
Range ax 4		+300°	+300°
Range ax 5		+130°	+130°
Range ax 6		±360°	±360°
Range ax 4 LeanID		±300°	±300°
Range ax 5 LeanID		±130°	±130°
Range ax 6 LeanID		±360°	±360°
Vel. ax 1	°/sec	75	75
Vel. ax 2	°/sec	60	60
Vel. ax 3	°/sec	60	60
Vel. ax 4	°/sec	85	85
Vel. ax 5	°/sec	85	85
Vel. ax 6	°/sec	115	115
Standard protection		Foundry Plus2	Foundry Plus2
Foundry Plus 2 (option)		Std	Std
Foundry Prime (option)		No	No
Clean Room (option)		No	No
Dress Pack (option)		SW, MH to ax.6	MH to ax.5
LeanID Dress pack (option)		MH, SW	MH, SW
Moment of inertia ax 6	kgm²	725	725



Technical data Working range IRB 8700-800/3.5

Technical data Working range IRB 8700-550/4.2

Content Summary

- Overview
- Targeted applications
- Key differentiators
- Technical data
- Summary

Summary

- Lower Total Cost of Ownership (TCO)
 - Design focused on uptime and reliability
 - Reduced maintenance
- 25 % faster
 -than any competitor in its size

Power and productivity for a better world[™]

