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Abstract—The paper at hand considers the design of
a controller for torque regulation of a variable speed
synchronous machine fed by a line commutated rectifier
and a load commutated inverter. The control approach
is model predictive control where a constrained optimal
control problem is solved to minimize the deviation of
the torque from its reference. The dynamic model of the
converters and drive is nonlinear and considers both the
rectifier and inverter firing angles as control input. Con-
trolling both firing angles simultaneously, as opposed to in
a cascaded manner, implies improved potential for dynamic
performance and disturbance rejection. In particular, the
controller handles voltage dips on the line better than a
conventional PI controller. The nonlinear MPC solution is
implemented through on-line optimization. The optimization
algorithm has been implemented on an embedded system
and has been shown to execute sufficiently fast for the
targeted control frequency.

I. I NTRODUCTION

In recent years there has been considerable interest in
model predictive torque and/or speed control of variable
speed electric machines, seee.g., [1]–[4]. However, the
focus of most, if not all, research has been on voltage
source converter topologies. In the present paper we
consider a synchronous machine fed bycurrent source
converters. To the best of our knowledge, model predic-
tive control (MPC) has not been applied to this type of
system prior to this paper.

The paper considers a variable speed synchronous
machine connected to the grid via a line commutated
rectifier and a load commutated inverter (LCI) [5], and
considers the design of a torque controller. The work
is motivated by gas compression plants which are often
situated in remote locations and operate under weak grid
conditions. Our goal is to design an improved torque
controller which can keep delivering torque during partial
loss of grid voltage (so-called brown-outs).
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The control approach is set in the framework of MPC.
The MPC formulation considers both the rectifier and
inverter firing angles as control inputs and stabilizes the
DC link current and rotor fluxes while tracking the torque
reference. The fact that the rectifier and inverter angles
are controlled "simultaneously" rather than in a cas-
caded fashion implies that the controller has potential for
higher dynamic performance compared to conventional
approaches. In particular, there is increased potential to
deliver torque during brown-outs.

The literature on MPC of power electronics is to a
large extent focused on so-called finite control set MPC
(FCS-MPC), seee.g., [6]. In FCS-MPC, the control input
is restricted to a finite set of values and the MPC problem
is solved by enumerating all possible combinations of
the input over the prediction horizon. The FCS-MPC
approach has a number of drawbacks, including very
short prediction horizon, chattering and unpredictable and
time varying switching frequency, see [7] for an extensive
discussion. The drawbacks of FCS-MPC are mitigated
by considering a continuous control variable, such as a
duty-cycle or a firing angle, which is mapped to switching
action through a modulator. The control approach outlined
in the present paper belongs to the later class of methods
which considers a continuous control variable.

Implementing the model predictive controller requires
to solve a constrained nonlinear, nonconvex optimization
problem in real-time. This is a challenging task as our
application asks for sampling times of one millisecond or
less and the embedded computing power is limited. Solv-
ing nonlinear MPC problems in such a situation requires
both a careful problem formulation and highly efficient,
state-of-the-art optimization algorithms. In this paper,
we follow the promising approach of auto-generating
customized nonlinear MPC algorithms that are tailored
to the problem at hand based on a symbolic problem
formulation as proposed in [8].

The paper is organized as follows. In Section II we
briefly describe the synchronous machine and the load-
commutated inverter. Afterwards a dynamic model of this
system is presented in Section III. The developed model
predictive torque controller is outlined in Section IV,
whereas the state estimation is described in Section V.



Fig. 1. Variable speed drive system comprised of line commutated
rectifier, load commutated inverter and synchronous machine.

Section VI contains simulation results with the proposed
controller. Finally conclusions are drawn in Section VII.

II. CURRENT SOURCE CONVERTERS AND

SYNCHRONOUSMACHINE

The paper considers a variable speed drive system
composed of line commutated rectifiers, inductive DC
link, load commutated inverters and a synchronous ma-
chine, see Fig. 1. The considered configuration of the
converter is a 12/12 pulse setting, whereas the proposed
scheme can easily be adapted to other configurations. The
shown rectifier and inverter blocks consist of six pulse
thyristor bridges. This type of drive systems are suitable
for high power applications in the range of several ten’s
of Megawatts such as high speed compressors or rolling
mills.

We note that the synchronous machine has two sets
of three phase windings. Each winding pair is connected
to its own inverter and both are physically displaced30o

from each other.

The control inputs (signals to be manipulated by the
controller) are the firing anglesα1, α2 of the rectifiers
and β1, β2 of the inverters. Furthermore, the excitation
flux is controlled by an excitation voltagev.

III. D YNAMIC MODEL

The rotor excitation flux varies considerably slower
than the other states of the system. We therefore control
the excitation flux with a slower outer loop and the design
of this control loop is not discussed in this paper. The
control variable (excitation voltage)v discussed above is
therefore not considered in the sequel and the excitation
flux is treated as a parameter.

For reduced computational complexity we impose that
both rectifiers apply the same firing angles and that both
inverters also apply the same firing angles. Thus, the
control input is

α : rectifier firing angle

β : inverter firing angle

and we imposeα1 = α2 = α andβ1 = β2 = β.

The state of the system consists of the DC ink current
and machine damper windings fluxes:

ψD : damper winding flux, d-component

ψQ : damper winding flux, q-component

iDC : DC link current.

Using an adaptation of the model of the dual-three
phase synchronous machine described in [9] and using an
averaged approximation of how the stator currents depend
on the inverter firing angle, the dynamics of the damper
winding fluxes

Ψ :=
[

ψD ψQ

]

′

are modelled as

d

dt
Ψ = AΨ+BiDC

[

cos(−β +∆)
sin(−β +∆)

]

+ Fψf , (1)

whereψf is the excitation flux,∆ is the stator voltage
angle in thedq-frame and whereA, B, F are constant
matrices.

The DC link current dynamics are described by

d

dt
iDC =

1

LDC

(

−RDCiDC + urec,1 + urec,2

− uinv,1 − uinv,2

) (2)

whereLDC, RDC are the inductance and parasitic resis-
tance of the inductor and whereurec,i, uinv,i are the DC
voltages of the rectifier and inverter bridges respectively.
We adopt an averaged model to describe the relation
between the AC and DC side voltages of the rectifier
and inverter. Neglecting the switching and commutation
intervals we have

urec,i ≈ kUL cos(α), uinv,i ≈ kUM,i cos(β) (3)

wherek is a constant,UL is the amplitude of the line volt-
ages andUM,i are the amplitudes of the stator winding
voltages. The line voltage amplitudeUL is a parameter
in the MPC problem formulation. The stator voltage
amplitudesUM,i of the motor are a (nonlinear) function
of the system state. The equations (1)-(3) comprise the
dynamic model of the synchronous machine, converters
and DC link used in the MPC problem formulation.

A. Torque Expression

The MPC problem formulation penalizes the deviation
of the torque from a given reference and we therefore
need an expression for the torque. The torque is given by

T = (ψd,1iq,1 + ψd,2iq,2 − ψq,1id,1 − ψq,2id,2)

where ψd,i, ψq,i, id,i, iq,i are the stator fluxes and
currents. Using the flux linkage equations and an averaged
approximation of how the stator currents depend on the
inverter firing angle, the torque can be expressed as a
nonlinear function of the system state.



IV. M ODEL PREDICTIVE CONTROLLER

At each sampling time, the model predictive controller
takes an estimate of the system state as initial condition
and minimizes a finite time horizon cost integral subject
to the dynamic constraints of the system and constraints
on the state and input. The cost criterion is

J :=

∫ kts+tp

kts

(T − Tref)
2dt (4)

where ts is the sampling period,tp is the prediction
horizon length,Tref is the torque reference.

A. Controller Implementation and On-Line Solution

In order to minimize criterion (4), the corresponding
optimal control problem first needs to be discretized in
time. If the dynamic model would be linear, one would
only need to perform this problem discretization once
before the actual runtime of the controller. In that case,
the only computational effort to be performed on-line
would be solving a convex quadratic programming (QP)
problem. Recent years have seen a rapid development
of on-line QP solvers that are able to solve such kind
of linearized problems in the milli- or even microsecond
range on embedded hardware, seee.g., [10]–[13]. Since
our model of the drive comprises nonlinear dynamics,
we are forced to discretize the optimal control problem
on-line at each sampling instant. Along with this dis-
cretization in time, we also compute first-order derivatives
of the state trajectory with respect to the initial state
value and the control moves along the horizon (also
called sensitivities). In doing so, we obtain a discrete-
time linearization of the optimal control problem, which
corresponds to a convex quadratic programming (QP)
problem. Finally, we eliminate all state variables from
the QP formulation to arrive at a small-scale, dense QP
problem. The QP is solved by an adapted variant of the
on-line QP solver qpOASES [10]. This procedure to solve
nonlinear MPC problems is known as real-time iteration
scheme with Gauss-Newton approximation of the second-
order derivatives [14].

In order to obtain a highly efficient implementation
of the nonlinear MPC algorithm sketched above, we
make use of the code generation functionality of the
ACADO Toolkit [8], [15]. This software takes a symbolic
formulation of the control problem and allows the user to
automatically generate customized nonlinear MPC algo-
rithms that are tailored to the specific problem structure.
The resulting C code is self-contained, highly optimized
and able to run on embedded computing hardware. In our
case, the nonlinear MPC controller is running on ABB’s
controller AC 800PEC, which is based on a 32-bit Power
PC processor with a clock speed of up to 600 MHz and
also includes an FPGA and a 64-bit IEEE floating point
unit. On this platform, the controller has been shown to
execute in less than1 millisecond.

V. STATE ESTIMATION

The MPC assumes that measurements or estimates of
the entire system state are fed to the controller at each

Fig. 2. Structure of the state estimator: Flux estimation and an Extended
Kalman Filter.

sampling time. In the present paper we donot assume
that the state is measured. Instead, the state is estimated
by an observer. The input to the observer corresponds to
quantities which are typically measured in an industrial
application. This section outlines how the estimates are
obtained.

The available measurements are indicated in Figure 1.
While the stator current voltagesuαβ = [uα, uβ]

T are
available directly, the DC link currentiDC and the stator
winding currentsiαβ = [iα, iβ]

T can be deduced from
the line side currents and the switching positions of the
thyristor bridges.

Figure 2 depicts the structure of the state estimation
which consists of two parts; a stator flux estimation and
an extended Kalman filter (EKF), [16]. The reason for
this separation is that the flux estimator runs at a higher
sampling rate in order to increase the estimation accuracy.

The stator flux estimator takes the stator winding
currents and voltages inαβ-coordinates and uses the so-
called voltage model,

uαβ = Riαβ +
d

dt
ψαβ ,

to compute an estimate of the stator fluxψαβ =
[ψα, ψβ ]

T . Using this model, the stator flux is computed
by integration.

The stator flux and the stator currents are the inputs
to the EKF. The EKF uses a dynamic model of the
synchronous machine, similar to the one described in
Section III, to estimate the remaining states of the system,
in particular the damper winding fluxesψD, ψQ.

VI. PERFORMANCEEVALUATION

The performance of the controller and observer is
evaluated in simulation using a high-fidelity Simulink
model. The model implements a complex grid model
including transformers and harmonic filters. The rectifier,
inverter and DC link are implemented using SimPower
components and the synchronous machine is represented
by a continuous time model derived from first principles.
The Simulink model also includes a model of the load
which is a rotating mass. The machine considered has
rated power of12 MW and the controller operates with
a sampling period of1 millisecond.
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Fig. 3. System response to steps in the torque reference. Left: MPC
controller. Right: PI controller.

In the sections below we consider the dynamic per-
formance of the MPC controller and compare it to a state
of the art PI-based solution. The prediction horizon of
the MPC controller is 20 milliseconds. All signals are
represented in the per-unit system.

A. Reference Tracking

We consider the system at nominal steady state and
apply steps in the torque reference. The reference, torque
and firing angles are shown in Fig. 3 where the left
column corresponds to the MPC controller and the right
corresponds to the PI controller. It can be seen that both
the MPC and PI controller achieve good tracking without
overshoot or oscillations. The MPC controller exhibits
slightly less variation of the rectifier firing angleα.

B. Line Voltage Drop

We consider the system at nominal steady state and
apply steps in the line voltage amplitude. The resulting
supply voltage amplitude, torque, DC link current and
firing angles are shown in Fig. 4 and 5.

The voltage steps considered have a duration of0.1
seconds and are spaced one second apart. We consider
a sequence of increasingly larger drops. The voltage
magnitudes are0.8 p.u., 0.6 p.u., 0.4 p.u. and0.2 p.u.
(see Fig. 4). This kind of disturbances has been reported
to occur when the phases of the transmission line briefly
touch due to strong wind.

From Fig. 4 it is clear to see that the voltage steps
in the source induces high frequency oscillations in the
voltage amplitude seen by the rectifier. This is mainly
because the harmonic filters which are present at the side
are excited. The results show that the MPC controller
manages to keep delivering torque for voltage drops down
to 0.4 p.u. For lower drops, the torque goes to zero, but
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Fig. 4. MPC controller: Response to sudden change in line voltage
amplitude.

the system is not destabilized and the torque returns to
the reference when the line voltage returns.

The MPC controller is superior to the PI controller
which trips already at the first voltage drop down to0.8
p.u. ( see Fig. 5). The PI controller handles the step down
in line voltage, but when the voltage returns, the system
trips due to a large over-current in the DC-link.

VII. C ONCLUSION

The paper considered nonlinear model predictive con-
trol for torque regulation of a synchronous machine sup-
plied by current source converters. The MPC formulation
does not impose a cascaded control structure, but uses
both the rectifier and inverter angles simultaneously to
stabilize the system state and control the torque. This
implies increased potential to stabilize the system and
reject disturbances. Simulations indeed show that the
controller can track the torque reference in the presence of
large line voltage drops where a traditional PI controller
fails. Thus, the proposed controller increases the system
ability of ride-through of brown-outs. Future work could
include experimental implementation and development of
dynamic models with lower complexity.
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Fig. 5. PI controller: Response to sudden change in line voltage
amplitude.
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