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live with. For example, A/D converter resolution may be 
treated as a source of noise. For an N-bit converter the RMS 
value of the quantization error is 2-N/√12 times the full scale 
amplitude and, for M-point FFT, the average value of the 
noise contained in each frequency bin is 10 log2(M/2) dB 
below that RMS value [8]. 

A.   Inverter-introduced noise 
This is a noise that is introduced by the inverter’s output 

being only approximately sinusoidal. It is important to 
understand its nature and magnitude. In simple Pulse Width 
Modulation (PWM) schemes, the switching frequency is 
held constant (independently of the load and speed), and 
only the duty cycle is modified. The switching frequency 
harmonics are easy to identify and eliminate from the output 
current spectrum. Direct Torque Control (DTC) scheme 
employed in the investigated drives produces a non-
deterministic switching pattern, where the switching 
frequency is constant only in an average sense. DTC 
spectrum is non-stationary: it varies even when the speed 
and load are constant. Fig. 1 shows an example of two sets 
of spectral data (inverter output current) under constant 
conditions. It is obvious that high variability and presence of 
“random” peaks would make it difficult to interpret an 
individual spectrum.  
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Fig. 1.  Individual output current spectra for identical operating points 
(above), and an averaged spectrum (below). 

B.   Non-constant output frequency 
True to their name, variable speed drives can change the 

output frequency to modify motor’s speed or torque. This 
can happen due to an external request (e.g., command to 
pump more water), or due to process changes (e.g., more 
load on a conveyor belt increases the slip of an asynchronous 
motor), or a combination of both. When collecting data we 
have several options. One would be to collect only when 
certain speed/load conditions are met. As the measurements 
are on-line, it is not difficult to implement such scenario. 
Another alternative would be to collect all the data and to bin 
them according to the current operating point (e.g., speed, 
torque and current). Finally, we can average the spectra 
obtained from the data, as described below.  

C.   Averaging of spectra 
The technique of spectra averaging is normally used to 

decrease the variance of the computed spectrum [9]. Each 
point of the final spectrum is computed by taking the mean 
of the corresponding points of the K spectra being averaged. 
In the process any transient features are averaged out, while 
stationary features common to all spectra remain. This is 
illustrated in the bottom part of Fig. 1, where the averaged 
transient features form a smooth background (including a 
“hump” around the average switching frequency), while the 
stationary features are identifiable as sharp peaks. 

The procedure described above averages individual points 
based on their absolute frequency (e.g., amplitudes at 100Hz 
for each spectrum are averaged together). Other choices of 
x-axis scaling are possible. For example, individual spectra 
can be scaled to the orders of the output frequency. In such 
case, even if the spectra being averaged had been collected at 
different values of that frequency, the output frequency 
harmonics would fall in the same place (e.g., amplitudes at 6 
times the output frequency for each spectrum are averaged 
together). Each scaling choice “preserves” certain families of 
peaks, while “averaging out” others, when spectra from a 
sufficient number of operating points are considered. 
Absolute frequency scaling keeps the frequencies that do not 
change between data sets. These include the line frequency 
(supplying the drive), or structural resonance peaks (e.g., 
torsional oscillations). Scaling to the orders of the output 
frequency preserves the output frequency harmonics. Scaling 
to the rotating frequency keeps the features related to the 
mechanical speed. 

It remains to be discussed how to average the spectra 
when the x-values fall in different places (e.g., when scaled 
to orders of the output frequency). We proceed by defining 
equispaced frequency “bins”, and assigning each frequency 
in any spectrum to its nearest “bin”. Then all the values in a 
given “bin” are averaged. Alternatively, instead of 
averaging, median can be taken (it is more “robust” than the 
average [9]). Even though more sophisticated schemes can 
be devised (e.g., weighting each frequency’s contributions to 
the neighboring bins), the scheme just described gives 
adequate results and is very straightforward. 

D.   Spectral aliasing 
This section describes both the problem and the solution 

to the phenomenon called aliasing. The sampling theorem 
[10] tells us that a continuous signal is uniquely determined 
by its discrete values probed at rate R, but only if it contains 
no spectral content at frequencies higher than the Nyquist 
frequency R/2. The usual practice is to low-pass filter the 
signal prior to digitizing it – to ensure this condition. In our 
case there is no pre-filtering – the signals were not designed 
for condition monitoring. They are probed/generated at rates 
up to 40kHz, but are available at lower frequencies (e.g., 
multiples of 1kHz or 10kHz), so spectral content above the 
Nyquist frequency is usually present. This is a problem, but 
may be a blessing in disguise, as discussed below. 

Spectral features above the Nyquist frequency are 
mapped onto the computed spectrum range according to: 

Fapp = R/2 – |(Ftrue MOD R) – R/2| (1) 

where Ftrue is the true frequency of a spectral feature (peak), 
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Fapp is its apparent position in an aliased spectrum, and R is 
the sampling rate (R/2 is the Nyquist frequency). A good 
analogy is a piece of transparent foil with the true (i.e., 
sampled infinitely fast) spectrum drawn. Folding the foil 
accordion-like along the multiples of R/2 produces the 
apparent spectrum. 

 
Fig. 2.  Folding foil analogy of aliased spectral content. True spectrum 
(above) is “folded” (below left), so all present frequencies overlap in the 
aliased low-frequency spectrogram (below right). 

 
The bad news is evident from Fig. 2 – all spectral features 

are crammed into the computed range, so it is difficult to 
interpret the peaks. The good news is that the spectral 
content is still present in our signal (not removed by anti-
alias filtering). With some work it can be recovered, at least 
partially. 

The procedure is based on spectra averaging described 
above. The requirement is that the output frequency varies 
slightly between individual data sets. Begin by “unfolding” 
each individual spectrum: appending alternatively reversed 
and straight copies of the computed spectrum (see Fig. 3). 
We repeat this procedure till the highest frequency of interest 
is included (e.g., 3-5 times). In this manner each peak is 
repeated once in each “fold”. One of these copies will occur 
at the actual frequency. For example, Table I considers a 
spectrum sampled at 1000Hz and the 12th harmonic of the 
100Hz output frequency (1200Hz). The Nyquist frequency is 
500Hz and, according to (1) the 12th harmonic will appear in 
the spectrum at 200Hz. Repeating the “unfolding” three 
times will produce additional copies at 800Hz (reversed 
copy), 1200Hz (straight copy) and 1800Hz (another reversed 
copy). We managed to reconstruct the true frequency (order 
12) in the 3rd fold. 
 

TABLE I 
FREQUENCIES (HZ AND ORDERS) OF VARIOUS APPARENT PEAKS DUE TO 

ALIASING OF THE 12TH  HARMONIC FOR DIFFERENT OUTPUT FREQUENCIES. 
 

Freq. & 
12th harm 

base 2nd fold 
reversed 

3rd fold 
straight 

4th fold 
reversed 

Hz Hz Hz Ord. Hz Ord. Hz Ord. Hz Ord.
99 1188 188 1.9 812 8.2 1188 12 1812 18.3

100  1200 200 2.0 800 8.0 1200 12 1800 18.0
101 1212 212 2.1 788 7.8 1212 12 1788 17.7

   
Generally, during the operation of the drive, the output 

frequency will shift somehow (or a lot), due to changing 
process requirements. When the spectra are scaled to the 
orders of the output frequency, the spectral peaks related to 

the output frequency will all match; while any other peaks 
will shift their relative position (see other rows of Table I). 

Continuing our example, consider the output frequency 
shifting to 99Hz. The 12th harmonic is now 1188Hz, aliased 
into the spectrum at 188Hz=order 1.90. Looking at Table I 
we notice that the copy of the peak corresponding to the true 
frequency stays at the correct order (12th) independently of 
the value of the output frequency. This is not true for the 
copies in other “folds”. Thus, when averaging multiple 
spectra, the “true” peaks will overlap, producing a high 
average, while other copies will get “averaged out” (Fig. 3). 
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Fig. 3.  Individual electric torque spectrum with aliased peaks (top), 
“unfolded” spectrum (middle) and averaged, “unfolded” spectrum (bottom). 

 
This method allows us to recover spectral content even 

beyond the Nyquist frequency. 

IV. DIAGNOSTIC OPPORTUNITIES 
This section discusses examples of diagnostic information 

that can be obtained from properly processed drive data. A 
general approach is to provide a set of Key Performance 
Indicators that can be tracked over time. In some cases their 
absolute value can have a well-defined meaning, in others it 
would be their change over time that provides diagnostic 
information. 

One of the simplest applications is (for drives equipped 
with active rectifier unit) a power quality meter. Total 
harmonic distortion of drive’s input voltage and current 
signals can be indicative of improper power supply quality. 
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Another obvious example is looking at the total harmonic 
distortion of the motor stator current (drive’s output current). 
Measurement of this current can also be the basis of Motor 
Current Signature Analysis, taking into account the closed-
loop control of the drive [3]-[4]. 

Other examples, such as operating point tracking, 
transient oscillation detection and cyclic load variability are 
described elsewhere [7]. 

One advantage of using the signals from the drive is that 
we have access to more than just the currents and voltages. 
As the drive controls the speed and/or torque, it has to keep 
track of these and other quantities. It is also aware of the 
flux, RMS current, electric power, instantaneous cos φ, and 
many other intermediate signals. 

Below are two further examples of information obtainable 
from drive-supplied data. 

A.   Determining the output frequency 
Generally, the output frequency can be read from the 

drive. However, sometimes it is impractical to do it, e.g., all 
channels are used to collect other signals. In such case we 
can determine the output frequency directly from the data. 
Many signals show harmonics of 6 times the output 
frequency. We can use these peaks (even if aliased) to 
enhance the estimate of this frequency significantly. To see 
why, let’s return to the example in Table I. Examining the 
12th harmonic peak, we see that its apparent position’s 
change is amplified 12 times: shifting the output frequency 
from 100 to 101Hz changes the peak’s position from 200 to 
212Hz. This means that establishing the peak’s location with 
uncertainty ε, the uncertainty of the fundamental (computed 
based on the 12th harmonic) is reduced to ε/12. 

A crude way of determining the peak’s frequency is by 
taking the location of its maximum amplitude. The 
uncertainty ε is then ± half the Fast Fourier Transform’s 
resolution. A simple improvement is fitting a parabola to this 
maximum and the two points around it and using the 
calculated location of this parabola’s maximum. More 
sophisticated schemes along this general idea give even 
better results. 

B.   Torsional resonance 
An example of diagnostic information obtained from 

drive-supplied signals relates to torsional oscillations on a 
compressor. The system consists of a medium voltage drive, 
induction motor, gearbox and a compressor. It has a resonant 
frequency at 16.7Hz, which sometimes gets excited. Before 
stopping production to fix the problem, the plant operator 
was interested in discovering whether it is possible to tract it. 
It turns out that many signals contain a trace of it. One 
example is the electric torque spectrum. Fig. 4 shows two 
examples of such spectra – one containing the resonant peak, 
the other not. By collecting the data every few minutes and 
computing the amplitude of the peak near 16.7Hz it is 
possible to continuously track the extent of the torsional 
oscillations, thus providing a measure of the problem’s 
severity. Fig. 5 illustrates a histogram of the peak’s 
amplitudes. For 2/3 of the cases the peak was discernable. So 
far we failed to correlate the amplitude with any other 
quantities. However, the very presence of the resonance is 
undesirable, as it puts extra stress on the motor, gearbox, 
bearings, etc. 

 
Fig. 4.  Two spectra – one shows the evidence of the resonance peak at 16.7 
Hz (dotted line), in the other the peak is absent (solid line).  
 

 
Fig. 5.  Histogram of the resonance peak amplitudes in computed spectra. 
This is for the 66% of the cases when the resonance is manifested. 
 

V. CONCLUSIONS 
 

Drives are often used to power equipment important to 
the plant process. They have access to and themselves 
generate large quantities of data related not only to their own 
operation, but also to the connected equipment. Though this 
data is normally used to support drive’s controlling function, 
it can be used for diagnostic purposes. This information is 
available at no extra cost, without additional hardware 
investment. It can be obtained 24 hours a day, seven days a 
week. “Bad” data points may be detected and discarded. 
However, both the format and the resolution of this data are 
pre-determined by the existing hardware. Data that is 
sufficient for control purposes may need to be specially 
treated to be useful for condition monitoring and diagnostics. 
Problems, such as varying speed, drive-introduced noise and 
spectral aliasing require special processing techniques to 
ensure reliable results. In many cases the quality is rescued 
by the quantity, which allows for averaging of many data 
sets to improve the reliability. 

This work has focused on some techniques for processing 
this data as well as on examples of useful information that 
can be thus obtained. These results validate the approach of 
using drive-supplied data as a supplemental source of 
diagnostic information about the drive itself, as well as about 
various aspects of the driven process. 
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