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ABSTRACT 
This paper illustrates an innovative analytics, also known 
as performance model, to estimate the probability of 
failure and remaining useful life of Medium Voltage (MV) 
breakers. The new proposed approach provides relevant 
information for a successful condition-based and 
predictive maintenance strategy. 
The performance model presented in this paper is based 
on analysis of the failure modes, causes and mechanisms. 
It is modular and scalable in order to take into account 
different scenarios of data availability (from static product 
nameplate data to dynamic condition monitoring and test 
data), applicable to a MV breaker of any manufacturer. 
The scope of the performance model is to provide the 
current health condition and estimate the probability of 
failure within a period of time, residual useful life, risk of 
failure and a level of accuracy based on the coverage of 
the failure modes under the condition monitoring. In 
addition, the performance model calculates the accuracy 
of the equipment health condition based on data 
availability and equipment knowledge. 
This paper presents the successful application of the 
proposed performance model on significant circuit 
breaker (CB) real cases both in industries and in utilities, 
explaining the benefits of the scalable approach. A first 
case shows the application of the analytics based on 
statistical information and environmental condition. 
Another case describes, instead, how to take advantage of 
advanced condition monitoring sensors in order to 
increase the accuracy of the performance model outcomes.  

INTRODUCTION 
Aging assets, an aging workforce, the introduction of 
networked smart grids, a proliferation of intelligent 
devices on the power grid as well as Internet of Things 
(IoT) are challenging utilities and industries to find more 
effective and efficient ways to maintain and monitor their 
critical assets.  
The traditional objective is to maintain high availability 
and reliability of the installed base. Nowadays many asset 
owners are looking at smart asset management, which is 
taking in account also the predictability because they have 
realized that avoiding unexpected outages, managing asset 
risks and maintaining assets before failure strikes are 
critical goals to improve the bottom line. 
 
According to [2] the asset manager needs condition 

assessment to calculate the risk associated with failure, and 
therefore better plan maintenance, retrofit and replacement 
budgets. In addition, the ISO 55000 [3] clearly defines the 
benefits of asset management highlighting the crucial role 
of risk. Briefly, risk is defined as a combination of the 
probability of failure and the consequences of the 
occurrence of the failure. The consequences of failure 
occurrence can be also defined as criticality or importance 
level of the asset. 
Smart asset management based on data analytics can 
dramatically improve the following benefits: extend the 
asset life times, increase predictability of performance and 
health, which ultimately helps the asset managers 
planning, and prioritizing risk mitigation actions. 
This methodology requires the availability of data, 
therefore asset condition assessment and condition 
monitoring are the pillars of any advanced maintenance 
strategy. An overview [4] describes the status and open 
research topics related to the condition assessment of 
Medium Voltage (MV) breakers and switchgears. 
Data analytics is generically a set of algorithms processing 
the gathered data to predict the future asset performances. 
Typically, prediction analytics-based is a process of using 
statistical and data mining techniques to analyze historic 
and current data sets, to create rules and predictive models 
and to predict future events. This is also called asset 
performance analytics, which is broadly aimed at 
optimizing the value of production assets by analyzing 
asset data to predict future failures and prevent downtime. 
This paper describes an innovative analytics approach for 
MV circuit breakers based on performance, failure mode 
and asset design analysis, and how it is applied in real 
applications. 

ANALYTICS FOR SMART ASSET 
MANAGEMENT 
Different data analytics methods can be used to detect 
varieties of failure modes, like for instance statistical data 
analysis, critical range and limits check, pattern and trend 
recognition. Most of these tools require a relevant quantity 
of data in terms of time-series data. However, most of MV 
switchgears performs few operations per year and the 
biggest part of the installed base embeds no or a limited 
number of sensors. Therefore, the accuracy of standard 
data analytics will not be enough and the new big data 
analytics solutions cannot be used due to limited amount 
of data. The innovative proposed approach, here called 
performance model, is based on failure mode analysis as 
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well as asset sub-components behaviour analysis, 
exploiting the existing available data sources. 
According to [1] performance model is defined here as a 
mathematical model assessing the current health condition 
and predicting the future health condition of a device or a 
system over time. In addition, the performance model 
provides information on the nature and causes of a 
potential impending failure. The performance model is, in 
other words, a mathematical model for condition 
monitoring, diagnostics and prognostics [9].  
Since the performance model described in this paper 
provides an assessment of the probability of failure, 
remaining useful life, risk, root causes of an impending 
failure, etc., for a device or system, it represents the 
foundation of any preventive, predictive and proactive 
maintenance solution.  
 

 
Figure 1: performance model outcomes for smart asset 
management 
 
Aim of the performance model is to compute the 
performance of an asset, expressed as a set of values for a 
few predefined Key Performance Indicators (KPIs), 
together with an estimation of their accuracy. It also 
provides hints to the customer and/or service personnel, in 
the form of messages that could be: 
• Indications of possible imminent problems 

(predictions) with the asset, e.g. the reliability of a 
specific part of the asset decreased below a critical 
level. 

• Notifications of mitigation actions (prescriptions), 
like the need to perform one or more maintenance 
tasks. 

MODEL : SCALABLE AND FLEXIBLE 
MV installed base scenario in utilities and industries vary 
a lot, mostly due to the long assets lifetime (even 40-60 
years). For instance considering MV breakers, it is quite 
common to have different types of equipment in just one 
plant: by model, by rating and by age. Moreover, in a plant 
there can be substation with or without Intelligent 
Electronic Devices (IED) able to provide data. 
Therefore, the design of the asset performance model 
needs to be scalable and flexible in order to consider the 
variable environment in terms of equipment type, data 
source availability and asset knowledge.  
The performance model applies to an asset. An asset is a 
specific instance of an asset type (or equipment type). In 

the context of MV, the asset type could be, e.g., a specific 
type (or variant) of Circuit Breaker (CB). 
Each asset can be decomposed in subsystems, which in 
turn can be furtherly decomposed down to components, 
obtaining a tree-like structure as depicted below: 
 

 
Figure 2: asset modeling by decomposition 
 
For each asset type, the model considers a collection of 
possible failure modes of the asset: the value of a KPI for 
the whole asset is computed aggregating the values of that 
KPI for each failure mode 
For the sake of asset performance modelling, the 
decomposition will stop at the level of Least Replaceable 
Unit (LRU), i.e. components available as spare parts that 
can be replaced by service personnel. 

MV CIRCUIT BREAKER DECOMPOSITION 
The modular approach of the performance model is based 
on the decomposition by failure modes and asset sub-
components. The approach fits perfectly for MV circuit 
breakers, which exist in different interruption technology, 
operating mechanism, ratings, and therefore presenting 
different type of failure modes.  
The performance model can consider condition monitoring 
or assessed data to evaluate the condition of each sub-
component. When the available data cannot cover the sub-
component evaluation, then the model runs a statistical 
function, which is based on the quality information 
collected by the manufacturer Quality Management Team, 
failure reports and service activities. 
Table 1 collects an example of the frequency and 
Cumulative Distribution Functions (CDF) of the time-to-
failure [8] by asset components and failure modes [7]. It is 
possible to have more failures per component. The CDF is 
calculated using a Kaplan-Meier [5] estimator for every 
component. 
 

Failure Component Frequency CDF 
Open Trip 
Coil short 
circuit Mechanical 

Chain f1 [%] Χ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  Lubrication 
loss 
… 

… Charging 
Motor f2 [%] X𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
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Damper Oil 
leakage Actuator f3 [%] X𝐴𝐴𝐴𝐴𝐴𝐴  
… 
… … …  
FMk Ck Fk [%] X𝐶𝐶𝐶𝐶 

Table 1: Decomposition of a CB 
 
In case the MV switchgear has IEDs or any other data 
source (e.g. specific sensors), the available condition data 
can be assigned to the proper monitored components and 
failure modes. This would increase the accuracy of the 
performance model results, compared to the statistical 
functions. 
For this reason, the model calculates the so-called Index of 
Coverage (IC), which is the sum of the frequencies of the 
monitored components. Higher IC means higher level of 
model outputs confidence. 

MODEL OUTPUT AGGREGATION 
As described before the performance model shall estimate 
several outputs. The most important are: the Probability of 
Failure (POF) and Remaining Useful Life (RUL). 
POF [6] is the asset probability of failure at a specific time, 
given a certain asset age (days from commissioning or 
number of operations), expressed as POF (t | age) where t 
is the time from age to end of life. 
Moreover, from POF is possible to derive a so-called 
Health Index (HI), which is a measure of the current health 
condition of the asset.  
RUL is an estimation of the time-to-maintenance or time-
to-failure of the asset given a certain asset age, expressed 
as RUL (· | age).  
 
If it is also available the consequence of failure or asset 
criticality as input, the model can combine it to the 
calculated POF, in order to estimate the Risk of failure. 
For each asset type, the model considers a different set of 
failure modes. Moreover, for each calculated output a 
specific algorithm can be used for the <KPI, failure mode> 
couple. 
The model computes POF and RUL for each applicable 
failure mode and then aggregates them to obtain the overall 
asset KPIs. 
The asset POF is 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = 1 −�(1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑖𝑖

 

 
where POFcomp-i is the POF computed for the i-th 
applicable component/failure mode. 
The asset RUL is 
 

𝑅𝑅𝑅𝑅𝑅𝑅 =  min𝑖𝑖�𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖� 
 
where RULcomp-i is the RUL computed for the i-th 
applicable component/failure mode. 

The decomposition to single failure modes/components 
and the above-defined aggregation functions let the 
performance model being modular and scalable. 
When a new algorithm for a specific component (with its 
own specific inputs and parameters) is available, it can 
easily be added to the performance model as shown in the 
figure below where a new ALGOXV1 is added to the 
model. 
 

ALGO1V1

ALGO2V1

ALGO3V1

Topen Time Series

Tclose Time Series

Tcharge Time Series

RUL1

RUL2

RUL3

Min(xi)

1 -  Π (1 – xi(t))

PoF1(t)

PoF2(t)

PoF3(t)

RUL

PoF(t)

Parameters

Inputs
Components 
Algorithms

Aggregation Outputs

Current Date

... ALGOXV1 RULx
PoFx(t)

X Time Series/data  
Figure 3: scalability of PM 

 
Each algorithm receives specific inputs and parameters, in 
order to calculate: RUL (· | age), POF (t | age) and 
messages (prescriptions). 
 
Every algorithm block is independent and can be 
implemented with any function like neural network, fuzzy 
logic, Monte Carlo simulation [10]. The unique constraint 
is about the generated outputs, as shown in Figure 4, to let 
the model runs the aggregation. 
 

Parameter 1
Parameter 2

...

RUL
PoF(t|age)

ALGOXV1

Parameters

Outputs
Time series [tk, vk]

Inputs

Simple values
… Messages

RUL and 
PoF(t|age) with 

confidence bounds

Figure 4: component model 
 

APPLICATION CASES 
The first case has input data composed of historical data, 
asset inspections and observations reports, operator 
interviews and performance tests. Instead, the second case, 
considers also online condition monitoring data collected 
by a dedicated MV breaker monitoring IED. These two 
different cases highlight the flexibility and scalability of 
the model. 
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Performance model based on statistical data  
This first case considers a model based statistical data 
calculation. The minimum required equipment 
information are the commissioning date (to determine the 
age), the last maintenance activity, and the last circuit 
breaker operation occurrence. 
The explanation of the case focuses on the spring charging 
motor component and its failure modes.  
In this case, the algorithm receives as input the CDF of the 
time-to-failure of the selected component type, mainly 
calculated on endurance tests quality reports, using 
Kaplan-Meier, as shown in Figure 5. 
 

 
Figure 5: CDF of the time-to-failure of a type of spring 
charging motor 
 
The algorithm of the selected component calculates the 
POF during its life, applying the above CDF. In this case, 
equipment life is expressed in number of operations, and 
POF is calculated considering a prediction window of 
1000 future operations.  
In this application, considering the consequence of failure 
(criticality and costs) of this equipment within the plant, a 
component POF alert threshold is calculated. 
Figure 6 shows that at around 9000 operations, the 
component POF exceeds the given threshold; and the 
model generates an alert. After the repair activity 
(substitution of the motor), the calculated component POF 
goes back to a value close to its “as-new” level. 
 

 
Figure 6: statistic model KPI 

Performance model based on continuous 
condition monitoring 
To explain the use of online monitored data, the case focus 
onto the CB spring charging motor failure mode, and the 
charging time series. 
In this case, the algorithm uses Monte Carlo simulations 
with two main parameters: operation timings and time 
span between operations. The simulation are used to 
estimate the POF and the RUL. 
Figure 7 shows on the top the spring charging time series, 
and on the bottom the POF in 24 months timeframe. 
During normal operations (initial part), where the spring 
charging time is in a normal range, the calculated POF is 
low (below 5%). Several operations before the motor 
failure POF increased up to 50%, due to an abnormal trend 
in the time-series. The higher POF indicates a possible 
failure and also the required mitigation actions, for 
instance, inspection and substitution of the motor, before 
the failure and a potential unscheduled down-time. 
The chart shows also the POF value after the motor repair 
activity, again below an acceptable threshold of 5% 
(threshold specific for this case). 
 

 
Figure 7: spring charging motor POF(t) 

 

Report 
The model outputs, represented graphically in Figure 8, 
shows an example. A spider chart reports the POF as health 
indexes for each subsystems/components within coloured 
areas (red, yellow, green), which represents serious 
degradation, signs of degradation and normal aging and 
therefore indicating the required mitigation actions 
urgency. 
Then the report expresses the RUL as the number of CB 
residual switching operations.  
At the end, the report collects the automatically generated 
mitigation actions, in order to drive and focus the service 
activity. 
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Figure 8: Circuit Breaker Reporting Example 

 

CONCLUSION 
This paper illustrates an innovative method to estimate the 
probability of failure and the residual useful life of MV 
Circuit Breaker, based on a performance model. This 
solution allows the Circuit Breaker health prediction 
(prognostic), which is the base for condition-, predictive- 
and prescriptive-based maintenance strategies. 
The decomposition in subsystems/components let the 
model be applicable to different input scenarios based on 
the available data and required accuracy. The modular 
framework based on independent components KPIs 
aggregation function allow upgrading the algorithms when 
new data sources or additional asset knowledge is 
available. 
The paper describes two cases demonstrating the 
scalability of the model in terms of different data sources. 
The first case shows the model results based on statistical 
data, while the second uses real-time condition monitoring 
data. 
The performance model reports outputs in a graphical way, 
with service prescriptions, easy to understand and apply. 
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