

ABB MEASUREMENT & ANALYTICS | FUNCTION REFERENCE MANUAL

Spirit^{IT} eXLerate Measurement supervisory software

Certified flow calculations, flow & batch calculations and worksheet functions

Measurement made easy

Spirit^{IT} eXLerate interfaces

Introduction

This document describes the spreadsheet functions for Spirit^{IT} eXLerate. It also provides background information on related standards and calculation methods used in the industry for quality and quantity measurement of hydrocarbon and other type of fluids.

The document serves as a reference manual for application engineers who have in-depth knowledge of the Spirit^{IT} eXLerate software.

For more information

All publications of Spirit^{IT} eXLerate are available for free download from:

	Search for:
Spirit ^{IT} eXLerate application reference manual	IM/eXL-EN
Spirit ^{IT} eXLerate advanced topics reference manual	CM/eXL-EN
Spirit ^{IT} eXLerate function reference manual	CM/eXL/RF-EN
Spirit ^{IT} release notes	RN/eXL-EN

Contents

1	Introduction	4
	Spirit ^{IT} Function Library	4
	API Petroleum Measurement Tables	4
-		
2	Spirit ^{IT} general functions	
	fx2CellSelection	
	fx3CellSelection	
	fxAGA10_M	
	fxAGA10ex_M	
	fxAGA3_C	
	fxAGA5_C	
	fxAGA8_C	
	fxAGA8_M	
	fxAGA8_Gross	
	fxAPI_Dens15C_1952	
	fxAPI_Dens15C_1980	
	fxAPI_Dens15C_NGL_LPG	
	fxAPI_Dens20C_NGL_LPG	
	fxAPI_Gravity60F_1952	
	fxAPI_Gravity60F_1980	
	fxAPI_MPMS_11_2_1	
	fxAPI_MPMS_11_2_1M	
	fxAPI_MPMS_11_2_2 fxAPI_MPMS_11_2_2M	
	fxAPI_MPMS_11_3_2_1 fxAPI_MPMS_11_3_3_2	
	fxAPI_MPM5_11_5_5_2	
	fxAPI_KD00F_1980 fxAPI_SG60F_1952	
	fxAPI_SGOOF_1952	
	fxAPI_Table5_1952	
	fxAPI_Table5_1992	
	fxAPI_Table5_2004	
	fxAPI_Table6_1952	
	fxAPI_Table6_1980	
	fxAPI_Table6_2004	
	fxAPI_Table23_1952	
	fxAPI_Table23_1980	
	fxAPI_Table23_2004	
	fxAPI_Table23E	
	fxAPI Table24 1952	
	fxAPI_Table24_1980	
	fxAPI_Table24_2004	
	fxAPI_Table24E	
	fxAPI_Table53_1952	
	fxAPI Table53 1980	
	fxAPI_Table53_2004	
	fxAPI Table53E	
	fxAPI_Table54_1952	
	fxAPI_Table54_1980	
	fxAPI_Table59_2004	
	fxAPI_Table59E	
	_ fxAPI_Table60_2004	
	fxAPI_Table60E	
	fxASTM_D1550_RD60	

fxASTM_D1550_Ctl77
fxASTM_D1555_Ctl80
fxBatchFWA
fxBatchHistData
fxBatchLatch
fxBatchMax
fxBatchMin85
fxBatchTotal
fxBatchTWA
fxBatchWatch88
fxConvertUnit
fxDeviationAlarm90
NIST1045
fxEthylene_IUPAC_C92
fxEthylene_IUPAC_M93
fxGasViscosity_200494
fxGenerateReport95
fxGERG2008_Gas96
fxGERG2008_Flash97
fxGPA_TP15
fxGPA2172_96_C99
fxGPA2172_96_M101
fxGPA2172_09_C103
fxGPA2172_09_M105
fxIAPWS_IF97_C 107
fxIAPWS_IF97_M108
fxIndex
fxInterpolationCurve 110
fxISO5167_ISA1932Nozzle111
fxISO5167_LongRadiusNozzle113
fxISO5167_Orifice115
fxISO5167_Venturi119
fxISO5167_VenturiNozzle121
fxISO6976_1983_M 123
fxISO6976_1995_M124
fxISO6976ex_1995_M 125
fxKeypadFallback127
fxKeypadFallbackArray128
fxLatch
fxLimitAlarm130
fxMR113131
fxName 132
fxNX19_1962 133
fxNX19_M134
fxPeriodFWA135
fxPeriodLatch136
fxPeriodMax137
fxPeriodMin138
fxPeriodTotal139
fxPeriodTWA140
fxPeriodWatch141
fxPID142
fxROCAlarm145
fxSarasota_C146
fxSarasota_M147

	fxSetOnChange	148
	fxSetOnCondition	148
	fxSetOnEvent	148
	fxSetIndexOnChange	148
	fxSetIndexOnCondition	149
	fxSetIndexOnEvent	149
	fxSGERG_C	150
	fxSGERG_M	151
	fxSolartron_Gas_C	152
	fxSolartron_Gas_M	
	fxSolartron_Liquid _C	
	fxSolartron_Liquid_M	
	fxSolartron_SG	
	fxStatusAlarm	
	fxTag	
	fxTimer	
	fxTotalizerDelta	
	fxTotalizerRate	
	fxUGC C	
	fxUGC_M	
	fxWatchUpdate	
	fxVCone C	
	fxVCone M	
3	Flow-X IO functions	172
3	Flow-X IO functions fxAnalogInput	
3		172
3	fxAnalogInput	172 172
3	fxAnalogInput fxAnalogOutput	172 172 173
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput	172 172 173 173
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput	172 172 173 173 173
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors	
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput	172 172 173 173 173 173 174 174 174 175 175 175 175 177 178 179 179
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput	172 172 173 173 173 173 174 174 174 174 175 175 175 177 178 179 179 180
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput fxSetPulseOutput fxPT100Input	172 172 173 173 173 173 174 174 174 174 175 175 175 177 178 179 179 180 180
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxSetDigitalOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput fxSetPulseOutput fxResetPulseOutput fxRTDInput	172 172 173 173 173 173 173 174 174 174 174 175 175 177 178 179 179 179 180 180 181
	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput fxSetPulseOutput fxSetPulseOutput fxRTDINput fxRTDINput fxPT100Table fxTimePeriodInput	172 172 173 173 173 173 173 174 174 174 174 175 175 175 177 178 179 179 179 180 180 181 181
3	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput fxSetPulseOutput fxRTDInput fxRTDInput fxTimePeriodInput Control Center reference	172 172 173 173 173 173 174 174 174 174 175 175 175 175 177 178 179 179 180 180 181 181 181
	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput fxSetPulseOutput fxRTDInput fxRTDInput fxRTDInput fxTimePeriodInput Control Center reference	
	fxAnalogInput fxAnalogOutput fxSetAnalogOutput fxDigitalInput fxDigitalOutput fxSetDigitalOutput fxFrequencyOutput fxFrequencyOutput fxSetFrequencyOutput fxDoubleChronometry fxPulseInput fxResetPulseInputErrors fxPulseOutput fxSetPulseOutput fxSetPulseOutput fxRTDInput fxRTDInput fxTimePeriodInput Control Center reference	

1 Introduction

Spirit^{IT} Function Library

The Spirit^{IT} products are based on Microsoft Excel. The Spirit^{IT} functions are configured as regular Excel functions. By using the output of one function as an input (argument) in another function a complete calculation scheme can be made. Functions can be defined on multiple sheets in order to organize the application.

API Petroleum Measurement Tables

History

The first version of the API Petroleum Measurement Tables was published in **1952**. In those days measurement readings were taken manually and the tables were used to convert the observed density or gravity at the observed temperature to the value at the reference temperature. So the table values were the actual standard.

The 1952 Tables consists of 58 tables containing all kind of correction and conversion factors used in the measurement of hydrocarbon liquids. Each table deals with a particular conversion of units, correction of density, or correction of volume. The 1952 tables that have to do with the conversion of density and volume are: 5, 6, 23, 24, 53 and 54. Table 5, 6, 23 and 24 convert density or volume to or from to a reference temperature of 60°F, while tables 53 and 54 refer to 15°C.

In **1980** a complete new set of tables was published together with computer routines to allow electronic devices to automatically calculate the volume conversion factors and API gravity / (relative) density at the reference temperature. Back then most electronic devices were not capable of performing double-precision floating point calculations, so the standard prescribed all kind of rounding and truncating rules to make sure that the calculations would always provide the same result. For the 1980 version the calculation procedures are the standard rather than the table values.

In the 1980 version, which is also referred to as **API-2540**, the tables are divided into 3 product groups and a letter designation was used to distinguish between the sub-tables. "A" was used for crude oil, "B" for refined products and "C" for special applications. The 1980 tables, however, did not cover the LPGs and NGLs density ranges and the 1952 Tables were left valid for these products. Furthermore, the lubricating oil tables (designated as "D") were not complete at the time of the printing in 1980 and were released two years later. As opposed to the A, B and C tables no implementation procedures were defined for the D tables.

In 1988 the Institute of Petroleum released its Paper No. 3 with tables 59 and 60 that are based on a reference temperature of 20°C.

This resulted in the following Petroleum Measurement Tables dealing with the conversion of volume and density to and from a reference temperature.

Number	Title			
5	API Gravity Reduction to 60°F			
6	Reduction of Volume to 60°F Against API Gravity at 60°F			
23	Reduction of Observed Specific Gravity to Specific Gravity 60/60°F			
24	Reduction of Volume to 600 F Against Specific Gravity 60/60°F			
53	Reduction of Observed Density to Density at 15°C			
54	Reduction of Volume to 15°C Against Density at 15°C			
59	Reduction of Observed Density to Density at 20°C			
60	Reduction of Volume to 20°C Against Density at 20°C			

In **2004** the API MPMS 11.1 1980 tables were superseded by a new set of tables primarily for the following reasons:

- API 11.1:2004 includes the correction for both temperature and pressure in one and the same algorithm
- Taken into account the progress in electronics (and for other reasons) the complex truncating and rounding rules were abandoned. Instead the calculation procedures use double-precision floating point math. The input and output values are still rounded in order to obtain consistent results.
- The convergence methods for the correction of observed density to base density have been improved.
- On-line density measurement by densitometers became common practice, requiring the pressure and temperature correction to be incorporated in one ands the same procedure
- The tables are extended in both temperature and density to cover lower temperatures and higher densities.
- The previous standard used a significant digit format which resulted in 4 or 5 decimal places depending on whether the observed temperature was above or below the reference temperature. The new standard prescribes 5 decimal places if or both cases.
- The IP paper No. 3 tables were added to accommodate conversion to 20°C.

Tables for lubricating oils including the implementation procedures are now part of the standard.

Volume correction for pressure

The API MPMS 11.1:1980 Tables only cover the correction for temperature. The correction for pressure was published in API MPMS standards 11.2.1 and 11.2.2.

The correction for pressure is to the atmospheric pressure or, for products within the lower density range, to the equilibrium vapor pressure.

To calculate the equilibrium vapor pressure an Addendum was added to API MPMS 11.2.2. This addendum is also known as **GPA TP-15** (1988). In September 2007 the addendum was replaced by a new API standard 11.2.5 and at the same time GPA TP-15 (1988) was updated with a new 2007 revision.

NGL and LPG tables

For NGL and LPG products volume correction tables 24E and 23E (at 60 °F) were published in **GPA TP-25** (1988), so the letter 'E" was used to distinguish the tables from the related API MPMS A, B, C and D tables.

GPA TP-25 has been superseded by **GPA TP-27** / API MPMS 11.2.4 (2007), which includes tables 53E, 54E, 59E and 60E to convert to 15°C and 20°C as well. All text from TP-25 is included without technical change, so TP-25 is still viable for conversion to and from 60 °F.

Overview of hydrocarbon liquid conversion standards

- ASTM-IP Petroleum Measurement Tables, Historical Edition, 1952
- API MPMS Chapter 11.1 1980* (Temperature VCFs for Generalized Crude Oils, Refined Products, and Lubricating Oils): Historical; Published in 14 separate volumes Also known as
 - API Standard 2540 (API-2540)
 - ASTM D1250
 - IP 200
- In 1982 chapters XIII and XIV were published containing tables 5D, 6D, 53D and 54D for lubricating oils.
- API MPMS Chapter 11.1 2004 (Temperature & Pressure VCFs for Generalized Crude Oils, Refined Products and Lube Oils)
- API MPMS Chapter 11.2.1- 1984 (Compressibility Factors for Hydrocarbons: 0-90°API): Historical: now incorporated into Chapter 11.1-2004
- API MPMS Chapter 11.2.1M- 1984 (Compressibility Factors for Hydrocarbons: 638-1074 kg/m3): Historical: now incorporated into Chapter 11.1-2004
- API MPMS Chapter 11.2.2 1984 (Compressibility Factors for Hydrocarbons: 0.350-0.637 Relative Density and –50°F to 140°F)
- API MPMS Chapter 11.2.2M 1986 (Compressibility Factors for Hydrocarbons: 350-637 kg/m3 Density (15°C) and -46°C to 60°C)
- API MPMS Chapter 11.2.2A 1984 (Addendum to Correlation of Vapor Pressure Correction for NGL): Superseded by Chapter 11.2.5
- API Publication/GPA TP-25/ASTM Publication (Temperature Correction for the volume of Light Hydrocarbons – Tables 24E and 23E: Superseded by API MPMS Chapter 11.2.4 GPA TP-25 was published in 1998 and replaced the 1952 tables 23, 24 for Light Hydrocarbon Liquids and GPA Technical Publication TP-16, which were previously used for volumetric measurement of LPG.

API MPMS Chapter 11.2.4 - 2007 / GPA TP-27 / ASTM Publication (Temperature Correction for the Volume of NGL and LPG – Tables 23E, 24E, 53E, 54E, 59E, 60E): Supersedes GPA TP-25

- API MPMS Chapter 11.2.5 2007 / GPA TP-15 / ASTM Publication (A Simplified Vapor Pressure Correlation for Commercial NGLs): Supersedes Addendum to Chapter 11.2.2 (11.2.2A)
- IP No. 3 1988 (Energy Institute (formerly Institute of Petroleum), Petroleum Measurement Paper No 3 Computer

Implementation Procedures for Correcting Densities and Volumes to 20 C. Superseded by IP No.3 - 1997

- IP No. 3 1997 (Energy Institute (formerly Institute of Petroleum), Petroleum Measurement Paper No 3 Computer Implementation Procedures for Correcting Densities and Volumes to 20 C. Supersedes IP No.3 - 1988
- ISO 91-1 1982 Petroleum measurement tables Part 1: Tables based on reference temperatures of 15 °C and 60 °F. Superseded by ISO 91-1 1992.
- ISO 91-1 1992 Petroleum measurement tables Part 1: Tables based on reference temperatures of 15 °C and 60 °F. Supersedes ISO 91-1 1982.
- ISO 91-2 1991 Petroleum measurement tables Part 2: Tables based on reference temperatures of 20 °C
- OIML R 63 1994 Petroleum measurement tables

Overview of the functions

The following table lists the volume conversion functions for hydrocarbon liquids as provided by the Spirit ^{IT}products.

Function	Temperature correction	Pressure correction	Input	Output	
ASTM-IP Petroleum M	leasurement Tables 1952 - American Edition				
API_Table23 (1952)	Table 23 - Specific Gravity Reduction to 60 °	F	SG (T)	SG (60°F)	
API_Table24 (1952)	Table 24 - Volume Reduction to 60 °F		SG (60°F)	Ctl	
Crude Oils, Refined P	roducts and Lubricating Oils (API MPMS 11.1:1	.980 / API-2540)			
API_Table5 (1980)	API 11.1:1980 Tables 5A, 5B and 5D	API 11.2.1:1984	°API (T, P)	°API (60°F, Pe)	
API_Table6 (1980)	API 11.1:1980 Tables 6A, 6B and 6D	API 11.2.1:1984	°API (60°F, Pe)	°API (T, P)	
API_Table23 (1980)	API 11.1:1980 Tables 23A and 23B	API 11.2.1:1984	RD (T, P)	RD (60°F, Pe)	
API_Table24 (1980)	API 11.1:1980 Tables 24A and 24B	API 11.2.1:1984	RD (60°F, Pe)	RD (T, P)	
API_Table53 (1980)	API 11.1:1980 Tables 53A, 53B and 53D	API 11.2.1M:1984	Density (T, P)	Density (15°C, Pe)	
API_Table54 (1980)	API 11.1:1980 Tables 54A, 54B and 54D	API 11.2.1M:1984	Density (15°C, Pe)	Density (T, P)	
Crude Oils, Refined P	roducts and Lubricating Oils (API MPMS 11.1:2	2004)			
API_Table5 (2004)	API 11.1:2004	API 11.1:2004	°API (T, P)	°API (60°F, 0 psig)	
API_Table6 (2004)	API 11.1:2004	API 11.1:2004	°API (60°F, 0 psig)	°API (T, P)	
API_Table23 (2004)	API 11.1:2004	API 11.1:2004	RD (T, P)	RD (60°F, 0 psig)	
API_Table24 (2004)	API 11.1:2004	API 11.1:2004	RD (60°F, 0 psig)	RD (T, P)	
API_Table53 (2004)	API 11.1:2004	API 11.1:2004	Density (T, P)	Density (15°C, 0 bar(g))	
API_Table54 (2004)	API 11.1:2004	API 11.1:2004	Density (15°C, 0 bar(g))	Density (T, P)	
API_Table59 (2004)	API 11.1:2004	API 11.1:2004	Density (T, P)	Density (20°C, 0 bar(g))	
API_Table60 (2004)	API 11.1:2004	API 11.1:2004	Density (20°C, 0 bar(g))	Density (T, P)	
API_Table6C (2004)	API 11.1:2004	Not applicable	Thermal expansion coefficient at 60°F	Ctl	
NGL and LPG (API 11.2	2.4)				
API_Table23E	API 11.2.4: 2007	API 11.2.2:1986	RD (T, P)	RD (60°F, Pe)	
	Table 23E	GPA TP-15:1988			
		GPA TP-15:2007			
API_Table24E	API 11.2.4: 2007	API 11.2.2:1986	RD (60°F, Pe)	RD (T, P)	
	Table 24E	GPA TP-15			
API_Table53E	API 11.2.4: 2007	API 11.2.2:1986	Density (T, P)	Density (15°C, Pe)	
	Table 53E	GPA TP-15			
API_Table54E	API 11.2.4: 2007	API 11.2.2:1986	Density (15°C, Pe)	Density (T, P)	
	Table 53E	GPA TP-15			
API_Table59E	API 11.2.4: 2007	API 11.2.2M:1986	Density (T, P)	Density (20°C, Pe)	
	Table 59E	GPA TP-15			
API_Table60E	API 11.2.4: 2007	API 11.2.2M:1986	Density (20°C, Pe)	Density (T, P)	
	Table 60E	GPA TP-15			

Hydrometer Correction

The API MPMS 11.1 1980 Standard (API-2540) assumes that the API gravity or relative density is observed with a glass hydrometer. Therefore a correction may be applied for the change of volume of the glass hydrometer with temperature. The hydrometer correction applies for tables 5A, 5B, 23A, 23B, 53A and 53B.

The 2004 standard does not include a correction for a glass hydrometer.

API-2540 Boundaries

API MPMS 11.1:1980 (API 2540) is based on published data that lie within the so-called 'Data' range. The other table values were obtained from extrapolation and lie within the 'Extrapolated' range. It is recommended not to use API-2540 outside the 'Data' and 'Extrapolated' ranges.

For the lubricating oil tables no difference is made between data that is table values that are based on published data and table values that are determined by extrapolation.

Range	API Gravity [°API]	Relative Density [-]	Density [kg/m³]	Temperature [°F]	Temperature [°C]
Data Range	040	1.0760 0.8250	1075.0 824.0	0250	-18120
	4050	0.8250 0.7795	824.0 778.5	0200	-1890
	50 55	0.7795 0.7585	778.5 758.0	0150	-1860
Extrapolated Range	040	1.0760 0.8250	1075.0 824.0	250300	120150
	4050	0.8250 0.7795	824.0 778.5	200 250	90125
	50 55	0.7795 0.7585	778.5 758.0	150 200	6095
	55 100	0.7585 0.6110	758.0 610.5	0200	-1895
Applies for:	Table 5A	Table 23A	Table 53A	Table 5A	Table 53A
	Table 6A	Table 24A	Table 54A	Table 6A	Table 54A
				Table 23A	
				Table 24A	

Range	API Gravity [°API]	Relative Density [-]	Density [kg/m³]	Temperature [°F]	Temperature [°C]
Data Range	040	1.0760 0.8250	1075.0 824.0	0 250	-18120
	4050	0.8250 0.7795	824.0 778.5	0200	-1890
	50 85	0.7795 0.6535	778.5 653.0	0150	-1860
Extrapolated Range	040	1.0760 0.8250	1075.0 824.0	250 300	120150
	4050	0.8250 0.7795	824.0 778.5	200 250	90125
	50 85	0.7795 0.6535	778.5 653.0	150200	6095
Applies for:	Table 5B	Table 23B	Table 53B	Table 5B	Table 53B
	Table 6B	Table 24B	Table 54B	Table 6B	Table 54B
				Table 23B	
				Table 24B	
Range	API Gravity [°API]	Relative Density [-]	Density [kg/m³]	Temperature [°F]	Temperature [°C]
Data Range	-1045	0.81.165	8001164	0300	-20+150
Applies for:	Table 5D	Table 23D*	Table 53D	Table 5D	Table 53D
	Table 6D	Table 24D*	Table 54D	Table 6D	Table 54D
				Table 23D*	
				Table 24D*	

* Values derived from Table 5D/6D

API-2540 - Rounding and truncating rules

For each table API Standard 2540 specifies an explicit 'Calculation Procedure' that includes the rounding and truncating of all the input, intermediate and output values. The 'Calculation Procedure' is considered to be the standard rather than the table values or a set of equations.

The function provides the option to either apply the full API rounding and truncating requirements or to perform the calculation procedure without any rounding and truncating being applied.

For tables 6A, 6B, 24A, 24B and 54A and 54B the standard makes a distinction between computational and table values for the calculated VCF. The table values are always rounded to 4 decimal places, whereas the computational values has 4 decimal places when the VFC >=1 and 5 decimal places when the VCF < 1.

When API rounding is enabled the convergence limit is set to the limit value as specified in the standard. When the API rounding is disabled the convergence limit is set to 0.00001 kg/m3 to obtain highest precision.

API-11.1:2004 Limits

Range	Density	Temperature	Pressure	
Crude Oil	610.61163.5 kg/m3 @ 60°F	-58302 °F	01500 psig	
	10010 API @ 60°F	-50150 °C	0103.4 bar(g)	
	0.611201.16464 RD @ 60°F			
	611.161163.79 kg/m3 @ 15°C			
	606.121161.15 kg/m3 @ 20°C			
Refined products	610.61163.5 kg/m3 @ 60°F	-58302 °F	01500 psig	
	10010 API @ 60°F	-50150 °C	0103.4 bar(g)	
	0.611201.16464 RD @ 60°F			
	611.161163.86 kg/m3 @ 15°C			
	606.121160.62 kg/m3 @ 20°C			
Lubricating oils	800.91163.5 kg/m3 @ 60°F	-58302 °F	01500 psig	
	4510 API @ 60°F	-50150 °C	0103.4 bar(g)	
	0.801681.1646 RD @ 60°F			
	801.251163.85 kg/m3 @ 15°C			
	798.111160.71 kg/m3 @ 20°C			

API constants in US customary units

For the tables in <u>US customary units</u> the following constants apply (both for the 1980 and the 2004 tables):

Product	API Table	К0	K1	K2
Crude oil	А	341.0957	0.0	0.0
Gasoline	В	192.4571	0.2438	0.0
Transition area	В	1489.0670	0.0	-0.00186840
Jet fuels	В	330.3010	0.0	0.0
Fuel oils	В	103.8720	0.2701	0.0
Lubricating oils	D	0.0	0.34878	0.0

API constants in metric units

For the tables in <u>metric units</u> the following constants apply (both for the 1980 and the 2004 tables):

Product	API Table	К0	K1	K2
Crude oil	А	613.9723	0.0	0.0
Gasoline	В	346.4228	0.4388	0.0
Transition area	В	2680.3206	0.0	-0.00336312
Jet fuels	В	594.5418	0.0	0.0
Fuel oils	В	186.9696	0.4862	0.0
Lubricating oils	D	0.0	0.6278	0.0

2 Spirit^{IT} general functions

This chapter lists all available functions in alphabetical order.

fx2CellSelection

Function

The function selects between 2 input cells (e.g. differential pressure cells) based on the actual measured value and the failure status of each cell.

The function can handle the following type of cell range configurations:

- Lo-Hi
- Hi-Hi

Where 'Lo' means low range, 'Mid' mid range and 'Hi' high range.

Function inputs	Remark	EU	SW tag	Range	Default
Name					
Cell A value	Input value as percentage of span of cell A				
Cell A status	Input status of cell A				
	0: Normal				
	<> 0 : Failure				
Cell B value	Input value as percentage of span of cell B				
Cell B status	Input status of cell B				
	0: Normal				
	<> 0 : Failure				
Range type	For a description of the functionality refer to adjacent section 'Logic'		RNGTYP		
	1: Lo Hi				
	Cell A at low range				
	Cell B at high range				
	2: Hi Hi				
	Cell A and B at same range				
Auto switchback	For a description of the functionality refer to adjacent section 'Logic'				
	0: Disabled				
	1: Enabled				
Switch-up percentage	Switch-up value expressed as percentage of span of the lower range	-	SWUPPERC	0100	95
Switch-down percentage	Switch-down value expressed as percentage of span of the lower range	-	SWDNPERC	0100	90

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
Selected cell number	1: Cell 1		SELNR		1
	2: Cell 2				
Selected cell status	0: Normal		SELSTS		0
	1: Failure				

Logic

The function will switch from one cell to another at the following conditions:

Range type = 'Lo Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switchup percentage of its range and cell B is healthy.
- Select cell B when cell A fails while cell B is healthy
- When cell B is currently selected
- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell A when cell B fails and cell A is healthy

Range type = 'Hi Hi'

When cell A is currently selected

- Select cell B when cell A value fails and cell B is healthy
- When cell B is currently selected
- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell A when cell B fails and cell A is healthy.

fx3CellSelection

The function selects between 3 input cells (typically differential pressure cells) based on the actual measured value and the failure status of each cell.

The function can handle the following type of cell range configurations:

- Lo Mid Hi
- Lo-Hi-Hi
- Hi-Hi-Hi

Where 'Lo' means low range, 'Mid' mid range and 'Hi' high range.

-	
Fun	ction

Function inputs	Remark		EU	SW tag	Range	Default
Name						
Cell A value	Input value as percentage of span of cell A					
Cell A status	Input status of cell A					
	0: Normal					
	<> 0 : Failure					
Cell B value	Input value as percentage of span of cell B					
Cell B status	Input status of cell B					
	0: Normal					
	<> 0 : Failure					
Cell C value	Input value as percentage of span of cell C					
Cell C status	Input status of cell C					
	0: Normal					
	<> 0 : Failure					
Range type	For a description of the functionality refer to adjacent section 'Log	ic'		RNGTYP		
	1: Lo Mid Hi					
	Cell A at low range					
	Cell B at mid range					
	Cell C at high range					
	2: Lo Hi Hi					
	Cell A at low range					
	Cell B and C at high range					
	3: Hi Hi Hi					
	Cell A, B and C at same range					
Auto switchback	For a description of the functionality refer to adjacent section 'Log	ic'				
	0: Disabled					
	1: Enabled					
Switch-up percentage	Switch-up value expressed as percentage of span of the lower rang	e	-	SWUPPERC	0100	95
	Does not apply for selection type 'Hi Hi Hi'					
Switch-down percentage	Switch-down value expressed as percentage of span of the lower ra	ange	-	SWDNPERC	0100	90
	Does not apply for selection type 'Hi Hi Hi'					
Function outputs	Remark EU	S	N tag	Alarm		Fallback
Status	0. Normal					

Function outputs	Remark	EU	Swiay	Aldiiii	Failback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
Selected cell number	1: Cell 1		SELNR		1
	2: Cell 2				
	3: Cell 3				
Selected cell status	0: Normal		SELSTS		0
	1: Failure				

Logic

The function will switch from one cell to another at the following conditions:

Range type = 'Lo Mid Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switchup percentage of its range and cell B is healthy.
- Select cell B when cell A fails while cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell C when cell B value is above or equal to the switchup percentage of its range and cell C is healthy
- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy

- Select cell A when cell B fails while cell A is healthy
- Select cell C when cell B and cell A fail and cell C is healthy

When cell C is currently selected

- Select cell B when cell B value is below or equal to the switchdown percentage of its range and cell B is healthy
- Select cell B when cell C fails while cell B is healthy
- Select cell A when cell C and cell B fail and cell A is healthy

Range type = 'Lo Hi Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switchup percentage of its range and cell B is healthy.
- Select cell C when cell A value is above or equal to the switchup percentage of its range and cell B fails and cell C is healthy.
- Select cell B when cell A fails while cell B is healthy

• Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell C when cell B fails while cell C is healthy
- Select cell A when cell B and cell C fail and cell A is healthy

When cell C is currently selected

- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell B when cell B is healthy and 'Auto switchback' is enabled
- Select cell A when cell C and cell B fail and cell A is healthy

Range type = 'Hi Hi Hi'

When cell A is currently selected

- Select cell B when cell A value fails and cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell A when cell B fails and cell A is healthy

Select cell C when cell B and A fail and cell C is healthy

When cell C is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell B when cell B is healthy and cell A fails and 'Auto switchback' is enabled
- Select cell A when cell C fails and cell A is healthy
- Select cell B when cell C and A fail and cell B is healthy

fxAGA10_M

The function calculates the speed of sound of a gas at the specified conditions of temperature and pressure using the formulae presented in the American Gas Association Report No 10.

Compliance

AGA Report No. 10 - Speed of Sound in Natural Gas and Other Related Hydrocarbon Gases, January 2003.

Boundaries

The AGA-10 calculation has defined uncertainty bounds for gas mixtures that lie within the 'Normal range'. Also an 'Expanded range' of gas mixtures is defined for which the AGA-10 calculation has a higher uncertainty. Using the AGA-10 calculation for gas mixtures that lie outside the 'Expanded range' is not recommended.

The AGA-10 standard specifies the same limits as the AGA-8 standard. Refer to the fxAGA8 function for details on the actual limit values used by this function to set output 'Range'.

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Pressure	Observed pressure	bar(a)		02000	
Temperature	Observed temperature	°C		-200+400	
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	СОМР	01	
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane 2: Add to n-Pentane 3: Neglect	-	NEOC5_MODE		1

Function outputs	Remark	EU	SW tag	Alam	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
	4: Mole fractions do not add up to 1.0 +- 0.0001			COMPOOR	
Speed of sound		m/s	SOS		0
Range	0: In Normal Range		RANGE		0
	All inputs are within the 'Normal Range'				
	1: In Extended Range				
	One or more inputs within the 'Extended Range, but none of the				
	inputs outside the Extended rang (outputs values have higher				
	uncertainty)				
	2: Out of Range			OOR	
	One or more inputs outside the 'Extended Range' (using the				
	AGA10 calculation is not recommended in this case)				

Calculations

Calculations are as documented in the standard.

fxAGA10ex_M

The extended AGA 10 function provides an extensive set of gas properties at the specified conditions of temperature and pressure using the formulae presented in the American Gas Association Report No 10.

Compliance

AGA Report No. 10 - Speed of Sound in Natural Gas and Other Related Hydrocarbon Gases, January 2003

Boundaries

The AGA-10 calculation has defined uncertainty bounds for gas mixtures that lie within the 'Normal range'. Also an 'Expanded range' of gas mixtures is defined for which the AGA-10 calculation has a higher uncertainty. Using the AGA-10 calculation for gas mixtures that lie outside the 'Expanded range' is not recommended.

The AGA-10 standard specifies the same limits as the AGA-8 standard. Refer to the fxAGA8 function for details on the actual limit values used by this function to set output 'Range'.

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Pressure	Observed pressure	bar(a)		02000	
Temperature	Observed temperature	°C		-200+400	
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	COMP	01	
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero	-	NEOC5_MODE		1
	1: Add to i-Pentane				
	2: Add to n-Pentane				
	3: Neglect				

Function outputs	Remark	EU	SW tag	Alam	Fall back
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
	4: Mole fractions do not add up to 1.0 +- 0.0001			COMPOOR	
Molecular weight		kg/kmol	MOLMASS		
Molar density at base conditions		mol/m3	MOLDENSB		
Molar density at flowing conditions		mol/m3	MOLDENSF		
Mass density at base conditions		kg/m3	MASSDENSB		
Mass density at flowing conditions		kg/m3	MASSDENSF		
Ideal gas relative density		-	IRD		
Real gas relative density		-	RRD		
Velocity of sound		m/s	SOS		
Compressibility at base conditions		-	ZB		
Compressibility at flowing conditions		-	ZF		
Supercompressibility		-	FPV		
Ideal gas specific enthalpy		kJ/kg	MASSH0		
Real gas specific enthalpy		kJ/kg	MASSH		
Real gas specific entropy		kJ/kg/K	MASSS		
Ideal gas isobaric heat capacity		kJ/kg/K	MASSCP0		
Real gas isobaric heat capacity		kJ/kg/K	MASSCP		
Real gas isochoric heat capacity		kJ/kg/K	MASSCV		
Ideal gas isobaric heat capacity		kJ/kmol/K	MOLCP0		
Real gas isobaric heat capacity		kJ/kmol/K	MOLCP		
Real gas isochoric heat capacity		kJ/kmol/K	MOLCV		
Ratio of specific heats		-	CPCV		
Isentropic exponent		-	КАРРА		
Critical flow factor		-	CRITC		
Ideal gas specific enthalpy		kJ/kmol	MOLH0		
Real gas specific enthalpy		kJ/kmol	MOLH		
Isentropic perfect gas critical flow		-	CI		
factor					
Isentropic real gas critical flow factor		-	CRI		
Range	0: In Normal Range		RANGE		0
	All inputs are within the 'Normal Range'				
	1: In Extended Range				
	One or more inputs within the 'Extended Range, but none of				
	the inputs outside the Extended rang (outputs values have				
	higher uncertainty)				
	2: Out of Range			OOR	
	One or more inputs outside the 'Extended Range' (using the				
	AGA10 calculation is not recommended in this case)				

13

fxAGA3_C

The function calculates the mass flow rate for Orifice pressure differential flow devices according to the AGA-3 standard for orifice meters with flange taps.

Compliance

- AGA Report No. 3 Orifice Metering Measurement of fluid flow by means of pressure differential devices, 1992
- API Manual of Petroleum Measurement Standards, Chapter 14 Natural Gas Fluids Measurement, Section 3 - Concentric Square-edged Orifice Meters 1992.

Function Function inputs Remark FU SW tag Default Range Optional tag name, tag description and tag group Name **Differential Pressure** Differential pressure over the primary flow device measured at the up- and inH2O @ 60°F 0 1000 0 downstream pressure tappings, which need to be in the positions as specified in the standard Pressure Down- or upstream pressure value of the fluid at metering conditions 0..30000 0 psia Temperature Down- or upstream temperature of the fluid at metering conditions °F -400..2000 0 lbm/ft3 Down or upstream density of the fluid at metering conditions 0 200 0 Density Dynamic Viscosity Dynamic viscosity of the fluid lbm/ft.s DYNVIS 0..10 6.9e-6 Isentropic Exponent Also referred to as κ (kappa). For an ideal gas this coefficient is equal to KAPPA 0..10 1.3 the ratio of the specific heat capacity at constant pressure to the specific heat at constant volume. This ratio is commonly used when the real value is unknown. PIPEDIAM Pipe Diameter 0 100 Internal diameter of the pipe at reference temperature inches 0 Pipe Expansion factor The thermal expansion coefficient of the pipe material 1/°F PIPEEXPF 0..1 6.2e-6 PIPEREFT -400..2000 **Pipe Reference** The reference temperature that corresponds to the 'Pipe diameter' input °F 68 temperature value inches ORIEDIAM 0 100 Orifice Diameter Orifice diameter at reference temperature 0 Orifice Expansion factor The thermal expansion coefficient of the orifice material 1/°F ORIFEXPF 0..1 9.25e-6 Typical values are: Orifice Reference The reference temperature that corresponds to the 'Orifice diameter' input °F ORIFREFT -400..2000 68 Temperature value Pressure Location 1: Upstream tapping PRESLOC 1 Input 'Pressure' represents the pressure at the upstream pressure tapping (p1). Since the absolute pressure is usually measured at the upstream tapping this is the most common setting. 2: Downstream tapping Input 'Pressure' represents the pressure at the downstream tapping (p₂). TEMPLOC Temperature Location 1: Upstream tapping 3 Input 'Temperature' represents the upstream temperature (t1). 2: Downstream tapping Input 'Temperature represents the temperature at the downstream tapping (t₂). 3: Recovered pressure Input 'Temperature' represents the downstream temperature at a location Where the pressure has fully recovered (t_3) . Since temperature measurement is usually downstream of the flow device this is the most common setting. Temperature Correction TEMPCOR 1 1: Use (1-κ)/κ Isentropic expansion using $(1-\kappa)/\kappa$ as the temperature referral exponent 2: Use temperature exponent Isentropic expansion using input 'Temperature Exponent' as the temperature referral exponent [-] TEMPEXP To correct the temperature from down- to upstream conditions (or vice Temperature Exponent 0 versa) the formula (κ -1)/ κ (isentropic expansion) will be used when the input value is set to 0, else the input value will be used. For more details refer to section 'Temperature correction'. DENSLOC Density Location This parameter specifies if and how the density should be corrected from 0 downstream to upstream conditions. 1: Upstream tapping Input 'Density' represents the density at the upstream pressure tapping (O1). 2: Downstream tapping Input 'Density' represents the density at the downstream tapping (ρ_2). 3: Recovered pressure Input 'Density' represents the density downstream at a location Where the pressure has fully recovered (ρ_3). DENSEXP Density Exponent. This factor is used when density correction is enabled. The formula $1/\kappa$ will -0 be used when the input value is set to 0, else the input value will be used. For more details refer to section function 'ISO5167- Orifice' 'Density correction'.

Function inputs	Remark	EU	SW tag	Range	Default
Fluid	The type of fluid being measured	-	FLUID		0
	1: Gas				
	2: Liquid				
	For liquid the expansion factor is set to 1, i.e. the fluid is considered to be				
	incompressible.				
Drain hole	When input is > 0 then an additional correction on the orifice diameter will	in	DRAIN	0 100	0
	be applied to account for the drain hole, as explained further on.				
Fpwl	Local Gravitational Correction Factor for Deadweight Calibrators used to	-	FPWL	0.91.1	1
	calibrate differential and static pressure Instruments.				
	Directly applied on the calculated mass flow rate within each iteration.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOVONV	
Mass flow rate	The calculated mass flow rate	klbm/hr	MASSR		0
Beta ratio	Orifice to pipe diameter ratio at upstream temperature	-	BETA		0
Orifice diameter	At the upstream temperature	inches	ORIFUP		0
Pipe diameter	At the upstream temperature	inches	PIPEUP		0
Upstream pressure	Pressure at upstream tapping (p1)	psia	PRESUP		0
Pressure at downstream	Pressure at downstream tapping (p2)	psia	PRESDN		0
tapping					
Recovered downstream	Fully recovered downstream pressure (p3)	psia	PRESREC		0
pressure					
Upstream temperature	Temperature at upstream tapping (t1)	°F	TEMPUP		0
Temperature at	Temperature at downstream tapping (t ₂)	°F	TEMPDN		0
downstream tapping					
Downstream Temperature	'Fully recovered' downstream temperature (t3)	°F	TEMPREC		0
Upstream density	Density at upstream tapping ($ ho_1$)	lbm/ft3	DENSUP		0
Density at downstream	Pressure at downstream tapping (p2)	lbm/ft3	DENSDN		0
tapping					
Downstream density	'Fully recovered' downstream density (ρ ₃)	lbm/ft3	DENSREV		0
Reynolds number	The pipe Reynolds number, i.e. the Reynolds number upstream of the	-	REYN		0
	orifice and not the one within the device throat itself)				
Discharge coefficient		-	DISCF		0
Expansion Factor		-	EXPFAC		0
Velocity of Approach		-	VOA		0
Pressure out of range	0: Pressure is in valid range	-	PRESOOR	PRESOOR	0
	1: Pressure is out of valid range				
Reynolds out of range	0: Reynolds number is in valid range	-	REYNOOR	REYNOOR	0
	1: Reynolds number is out of valid range				
Diameter out of range	0: Device and pipe diameter and Beta ratio in valid range	-	DIAMOOR	DIAMOOR	0
	1: Device diameter, pipe diameter and/or Beta ratio out of valid range				

Calculations

The calculations are in accordance with the standard.

Pressure correction

 The relation between the pressure at the upstream tapping p₁ and the pressure at the downstream tapping (p₂) is as following:

$$p_2 = p_1 - \frac{\Delta p \cdot K_{units}}{1000}$$

The relation between the pressure at the upstream tapping and the downstream tapping is as following:

$$p_{3} = p_{1} - p_{LOSS}$$

$$p_{LOSS} = \frac{\left(1 - \alpha \cdot \beta^{2}\right)}{\left(1 + \alpha \cdot \beta^{2}\right)} \cdot \Delta p \cdot K_{units}$$

$$\alpha = C \cdot E$$

$$E = \frac{1}{\sqrt{\left(1 - \beta^{4}\right)}}$$

Where:

p ₁	Pressure at upstream tapping	psia
-	Pressure at downstream tapping	psia
p ₂	11 3	- 1
p ₃	Fully recovered downstream pressure	psia
Δp	Differential pressure	inH20 @ 60°F
p _{LOSS}	Pressure loss over the meter	psi
С	Discharge coefficient as calculated by the	-
	standard	
α	Flow coefficient	-
β	Diameter ratio at the upstream pressure and	-
	temperature	
E	Velocity of approach factor	-
Kunits	Unit conversion factor to convert a value	-
	expressed in 'inH2O @60°F' to the corresponding	
	expressed in 'psi' (conversion as specified in	
	section 'Unit Types')	

Temperature correction

• When input 'Temperature correction' is set to 1, then an isentropic expansion based on the isentropic coefficient is applied:

$$t_{1} = \left(t_{2} + 459.67\right) \cdot \left(\frac{p_{2}}{p_{1}}\right)^{\frac{1-\kappa}{\kappa}} - 459.67$$
$$t_{1} = \left(t_{3} + 459.67\right) \cdot \left(\frac{p_{3}}{p_{1}}\right)^{\frac{1-\kappa}{\kappa}} - 459.67$$

• When input 'Temperature correction' is set to 2, then an isentropic expansion based on input 'Temperature exponent'

is applied:
$$t_1 = (t_2 + 459.67) \cdot \left(\frac{p_2}{p_1}\right)^{K_{TE}} - 459.67$$

 $t_1 = (t_3 + 459.67) \cdot \left(\frac{p_3}{p_1}\right)^{K_{TE}} - 459.67$

Where:

t1	Upstream temperature	°F
t ₂	Temperature at the downstream tapping	°F
t₃	Temperature at the fully recovered downstream pressure	°F
p1	Upstream pressure	psia
p ₂	Pressure at the downstream tapping	psia
p₃	Fully recovered downstream pressure	psia
κ	Isentropic exponent	-
K _{TE}	Temperature exponent	-

Density correction

 When input 'Density exponent' = 0, then the following isentropic corrections are applied (depending on the type of Density Correction)

$$\rho_1 = \rho_2 \cdot \left(\frac{p_1}{p_2}\right)^{\frac{1}{\kappa}} \qquad \rho_1 = \rho_3 \cdot \left(\frac{p_1}{p_3}\right)^{\frac{1}{\kappa}}$$

• Else the value of input 'Density Exponent' is used

$$\rho_1 = \rho_2 \cdot \left(\frac{p_1}{p_2}\right)^{K_{DE}} \qquad \qquad \rho_1 = \rho_3 \cdot \left(\frac{p_1}{p_3}\right)^{K_{DE}}$$

Where:

ρ1	Upstream density	lbm/ft3
ρ2	Density at the downstream tapping	lbm/ft3
ρз	Density at the fully recovered downstream pressure	lbm/ft3
p1	Upstream pressure	psia
p ₂	Pressure at the downstream tapping	psia
p ₃	Fully recovered downstream pressure	psia
κ	Isentropic exponent	-
Kde	Density exponent	-

fxAGA5_C

The AGA 5 standard defines methods to calculate the mass and volume based calorific values at 60°F and 14.73 psia for a natural gas based on known molar fractions of the <u>non</u>-hydrocarbon gas components.

Compliance

- A.G.A. Transmission Measurement Committee Report No. 5 (Fuel gas Energy Metering) 1981
- A.G.A. Transmission Measurement Committee Report No. 5 (Fuel gas Energy Metering) 1996 (Reprinted 1999)

Function inputs	Remark	۲	EU	SW tag	Range	Default
Name	Option	al tag name, tag description and tag group				
Composition	Standa	rd composition as defined in section 'Standard gas	molar fraction	СОМР	01	0
	compo	sition.				
	Only th	e following components are considered by the calculation:				
	N2	Nitrogen				
	CO2	Carbon dioxide				
	H2O	Water				
	H2S	Hydrogen sulfide				
	H2	Hydrogen				
	со	Carbon monoxide				
	02	Oxygen				
	He	Helium				
	Sum of	these fractions may not exceed 1				
Specific Gravity	Molar N	lass Ratio, i.e. ratio of the molar mass of the gas and of the	-	SG	01	0
	molar n	nass of air (specified in AGA-5 as 28.9644 kg/kmol				
	(lbm/lb	mol))				
Function outputs		Remark	EU	SW	tag Alarm	Fallback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Calorific value mass	Mass based calorific value	Btu/lbm	CV_MASS		0
Calorific value volume	Volume calorific value at 60°F and 14.73 psia	Btu/scf	CV_VOL		0

Calculations

The Energy to Mass ratio is calculated according to Section III of the standard, which contains the calculation procedure for the gas mass to energy conversion. The equations based on the 'by volume' fractional values are used (and not the equations based on the 'by weight' values).

The Energy to Volume ratio is calculated according to Section II of the standard, which contains the calculation procedure for the gas volume to energy conversion.

fxAGA8_C

The compressibility and density of a gas are calculated from the composition, temperature and pressure in accordance with the 'Detail Characterization' method outlined in the AGA-8 standard, with the input and output values in **US Customary** units.

Compliance

- AGA Report No. 8, Second edition November 1992 2nd printing July 1994
- API MPMS 14.2, Second edition November 1992 2nd printing July 1994
- ISO 12213 Natural gas Calculation of compression factor Part 2: Calculation using molar-composition analysis, 1997

Boundaries

The AGA-8 calculation has defined uncertainty bounds for gas mixtures that lie within the 'Normal range'. Also an 'Expanded range' of gas mixtures is defined for which the AGA-8 calculation has a higher uncertainty. Using the AGA-8 calculation for gas mixtures that lie outside the 'Expanded range' is not recommended.

Input value	Normal Range	Expanded Range	EU
Pressure	020000	020000	psia
Temperature	-200 +400	-200 +400	°F
Mole fraction of Methane	0.45 1.00	0.00 1.00	-
Mole fraction of Ethane	0.00 0.10	0.00 1.00	-
Mole fraction of Propane	0.00 0.04	0.00 0.12	-
Mole fraction of Butanes	0.00 0.01	0.00 0.06	-
Mole fraction of Pentanes	0.00 0.003	0.000.04	-
Mole fraction of Hexanes Plus	0.00 0.002	*	-
Mole fraction of Carbon monoxide	0.00 0.03	0.00 0.03	-
Mole fraction of Carbon dioxide	0.00 0.30	0.00 1.00	-
Mole fraction of Nitrogen	0.00 0.50	0.00 1.00	-
Mole fraction of Helium	0.00 0.002	0.00 0.03	-
Mole fraction of Argon	0.00 0.00	0.00 0.01	-
Mole fraction of Oxygen	0.00 0.00	0.00 0.21	-
Mole fraction of Hydrogen Sulphide	0.00 0.0002	0.00 1.00	-
Mole fraction of Hydrogen	0.00 0.10	0.00 1.00	-
Mole fraction of Water	0.00 0.0005	*	-

* For these components the dew point temperature is the upper limit. Limit check is ignored for reason of simplicity.

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Pressure	Pressure value	psia		040000	1.01325
Temperature	Temperature value	°F		-250+800	0
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	COMP	01	0
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane 2: Add to n-Pentane 3: Neglect	-	NEOC5_MODE		1

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
	4: Mole fractions do not add up to 1.0 +- 0.0001			COMPERR	
Compressibility factor		-	Z		1
Mass Density		lb/ft3	MASDENS		0
Mole Density		lbmol/ft3	MOLDENS		0
Molar Mass		lb/lbmol	MOLMASS		0
Range	0: In Normal Range		RANGE		0
	All inputs are within the 'Normal Range'				
	1: In Extended Range				
	One or more inputs within the 'Extended Range, but none of the				
	inputs outside the Extended rang (outputs values have higher				
	uncertainty)				
	2: Out of Range			OOR	
	One or more inputs outside the 'Extended Range' (using the AGA8				
	calculation is not recommended in this case)				

Calculations

The calculations are as documented in the standard.

fxAGA8_M

The compressibility and density of a gas are calculated from its composition, temperature and pressure in accordance with the 'Detail Characterization' method outlined in the AGA8 standard, with the input and output values in **metric** units.

Compliance

- AGA Report No. 8, Second edition November 1992 2nd printing July 1994
- API MPMS 14.2, Second edition November 1992 2nd printing July 1994
- ISO 12213 Natural gas Calculation of compression factor Part 2: Calculation using molar-composition analysis, 1997

Boundaries

The AGA-8 calculation has defined uncertainty bounds for gas mixtures that lie within the 'Normal range'. Also an 'Expanded range' of gas mixtures is defined for which the AGA-8 calculation has a higher uncertainty. Using the AGA-8 calculation for gas mixtures that lie outside the 'Expanded range' is not recommended.

Input value	Normal Range	Expanded	EU
	_	Range	
Pressure	0 1379	0 1379	bar(a)
Temperature	-129 +204	-129 +204	°C
Mole fraction of Methane	0.45 1.00	0.00 1.00	-
Mole fraction of Ethane	0.00 0.10	0.00 1.00	-
Mole fraction of Propane	0.00 0.04	0.00 0.12	-
Mole fraction of Butanes	0.00 0.01	0.00 0.06	-
Mole fraction of Pentanes	0.00 0.003	0.00 0.04	-
Mole fraction of Hexanes Plus	0.00 0.002	*	-
Mole fraction of Carbon	0.00 0.03	0.00 0.03	-
monoxide			
Mole fraction of Carbon dioxide	0.00 0.30	0.00 1.00	-
Mole fraction of Nitrogen	0.00 0.50	0.00 1.00	-
Mole fraction of Helium	0.00 0.002	0.00 0.03	-
Mole fraction of Argon	0.00 0.00	0.00 0.01	-
Mole fraction of Oxygen	0.00 0.00	0.00 0.21	-
Mole fraction of Hydrogen	0.00 0.0002	0.00 1.00	-
Sulphide			
Mole fraction of Hydrogen	0.00 0.10	0.00 1.00	-
Mole fraction of Water	0.00 0.0005	*	-

* For these components the dew point temperature is the upper limit. Limit check is ignored for reason of simplicity.

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Pressure	Pressure value	bar(a)		02800	1.01325
Temperature	Temperature value	°C		-150+450	0
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	COMP	01	0
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane 2: Add to n-Pentane 3: Neglect	-	NEOC5_MODE		1

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
	4: Mole fractions do not add up to 1.0 +- 0.0001			COMPERR	
Compressibility facto	r	-	Z		1
Mass Density		kg/m3	MASDENS		0
Mole Density		kmol/m3	MOLDENS		0
Molar Mass		kg/kmol	MOLMASS		0
Range	0: In Normal Range		RANGE		0
	All inputs are within the 'Normal Range'				
	1: In Extended Range				
	One or more inputs within the 'Extended Range, but none of the inputs outside				
	the Extended rang (outputs values have higher uncertainty)				
	2: Out of Range				
	One or more inputs outside the 'Extended Range' (using the AGA8 calculation is not recommended in this case			OOR	

Calculations

The calculations are as documented in the standard.

fxAGA8_Gross

This function calculates the compressibility factor in accordance with the AGA-8 Gross Characterization Method. Although the AGA-8 Gross Method is based on the Standard GERG Virial Equation Of State (SGERG) there are slight differences in the results.

Two different methods are specified by the standard. Method 1 takes the Pressure, Temperature, Specific Gravity (Relative Density), Carbon Dioxide content and Gross Heating Value (GHV) as inputs. Method 2 takes the same inputs except for the Nitrogen content instead of GHV.

Compliance

- AGA 8, Second edition November 1992 2nd printing July 1994
- AGA Report No. 8, Second edition November 1992 2nd printing July 1994
- API MPMS 14.2, Second edition November 1992 2nd printing July 1994

Boundaries

The AGA8 standard recommends using the Gross Characterization Method only when input conditions lie within the following range. For conditions outside this range the standard recommends to use the Detailed Characterization Method.

Input value	Normal Range	EU
Temperature	32130	°F
Pressure	01200	psia
Gross heating value	475 1210	Btu/ft3
Relative density	0.554 0.87	-
Carbon dioxide	0.00 0.30	mol/mol
Nitrogen	0.00 0.50	mol/mol

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Temperature	Observed temperature	°F	-250+800	60
Pressure	Observed pressure	psia	040000	
Relative density	Relative density at the corresponding reference temperature and pressure	-	02	0
RD reference temperature	Reference temperature for relative density	°F	-250+800	60
RD reference pressure	Reference pressure for relative density	psia	040000	14.73
Gross heating value	Gross heating value at the corresponding reference temperature and pressure	Btu/ft3	02500	0
GHV reference temperature	Reference temperature for gross heating value	°F	-250+800	60
GHV reference pressure	Reference pressure for gross heating value	psia	040000	14.73
Nitrogen	Nitrogen (N2) fraction	mol/mol	01	0
Carbon dioxide	Carbon dioxide (CO2) fraction	mol/mol	01	0
Method	Gross Characterization Method:	-		0
	1: GHV, Relative Density, CO2			
	2: Relative Density, CO2, N2			
	Note: For Method 1 input 'Nitrogen' is not used, while for Method 2 inputs 'Gross			
	heating value', 'GHV reference temperature' and 'GHV reference pressure' are not			
	used.			

Function outputs Remark ΕU SW tag Alarm Fallback Status STS 0. Normal 1: Input argument out of range FIOOR CALCERR 2: Calculation error NOCONV 3: No convergence Compressibility factor 1 Molar mass lb/ lbmol 0 Density at observed pressure and temperature lb/ft3 Density 0 Range RANGE 0: In Normal Range 0 All components are within the range that is recommended by the standard 1: Out of Range One or more inputs are outside the recommended range

Calculations

The calculations are in accordance with the standard.

fxAPI Dens15C 1952

Density (T, P) <--> Density (15°C, equilibrium pressure)

This function converts a density value at the observed temperature and pressure to the density at 15°C and the equilibrium pressure (typically 0 barg) or vice versa. The temperature conversion is according to ASTM-IP Petroleum Measurements Tables 1952 (Also known as API-1952 tables) Table 54.

NOTE: this function is a combination of the API 1952 Tables and API 11.2.1M. For the calculation from observed to standard conditions an iterative calculation is required. The rounding and truncating of input and intermediate values is implemented such that the example calculations as specified in both standards are exactly reproduced.

Compliance

 ASTM-IP Petroleum Measurement Tables, Metric Edition, Metric Units of Measurement, 1952

API MPMS 11.2.1M - Compressibility Factors for Hydrocarbons: 638 - 1074 Kilograms per Cubic Meter Range - First Edition, August 1984

Function inputs	Remark	EU	SW ta	ag	Range	Default
Name	Optional tag name, tag description and tag group					
Observed Density	Depending on the conversion method this is the Density either at the observed	kg/m3			01300	0
	temperature and observed pressure or at 15 °C and the equilibrium pressure					
Observed temperature		°C			-100200	15
Observed pressure		bar(g)			-1150	0
API 11.2.1 rounding	0: Disabled	-	API11	21RND		0
	The calculation of the compressibility factor F is performed with full precision					
	1: Enabled					
	API-MPMS 11.2.1 rounding and truncating rules are applied. The compressibility					
	factor F is rounded to 3 decimal places as specified in the standard.					
Equilibrium pressure	The equilibrium pressure is considered to be 0 bar(g) for liquids which have an	bar(g)	EQUI	PRES	0150	0
	equilibrium pressure less than atmospheric pressure (in compliance with API					
	MPMS 12.2 par. 12.2.5.4).					
Conversion method	1: From observed to standard conditions		CON	/ERSION		1
	2: From standard to observed conditions					
Function outputs	Remark		EU	SW tag	Alarm	Fallback
Status	0: Normal		-	STS	-	
	1: Input argument out of range				FIOOR	1
	2: Calculation error				CALCERR	
	3: No convergence				NOCONV	
Output Density	Depending on the conversion method this is the Density either at 15 °C and the		kg/m3	DENS		0
	equilibrium pressure or at the observed temperature and observed pressure					
CTL	Volume correction factor for temperature.		-	CTL		1
CPL	Volume correction factor for pressure		-	CPL		1
	Value will be rounded according to input 'API 11.2.1 rounding'					
CTPL	Combined volume correction factor		-	CTPL		1
	CTPL = CTL * CPL					
F	Compressibility factor		-	F		0
CTL calc out of range	With respect to the standard used for the calculation of CTL the combination of ir	nput				0
	values is:					
	0: In Range					
	1: Out of Range				CTLOOR	
						0
CPL calc out of range	With respect to the standard used for the calculation of CPL the combination of ir	nput				0
CPL calc out of range	· · · · · · · · · · · · · · · · · · ·	nput				0
CPL calc out of range	With respect to the standard used for the calculation of CPL the combination of in	nput				0

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the Density at standard conditions:

- 1 At the start of the iteration the initial value for Density at [15 °C, equilibrium pressure] is set to the Observed Density. The initial CPL value is set to 1.
- 2 The CTL value is determined from the Density at [15 °C, equilibrium pressure] according to API 1952 Table 54.
- 3 The Density at [15 °C, equilibrium pressure] is calculated from the Observed Density, the new CTL value and the CPL value from the previous iteration.
- 4 The compressibility factor is calculated according to API MPMS 11.2.1M from the density at [15 °C, equilibrium pressure] and the 'Observed temperature'. If API 11.2.1M rounding is enabled then the density and temperature are rounded and

the calculations are performed in accordance with the rounding and truncating rules of the standard.

- 5 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 6 The Density at [15°C, equilibrium pressure] is calculated by dividing the Observed Density by the CTL and the new CPL value.
- 7 Steps 2 through 6 are repeated taking the Density value from step 7 as the start value for the next iteration until the absolute difference between two consecutive Density values is 0.0001.

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the Density at observed conditions:

- 1 The CTL value is calculated according to API 1952 Table 54
- 2 The compressibility factor is calculated according to API MPMS 11.2.1M from the input density and temperature'. If API 11.2.1M rounding is enabled then the input density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 3 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 4 The output Density (at observed temperature and pressure) is calculated from the input Density and the CTL and the CPL values.

fxAPI_Dens15C_1980

Density (T, P) <--> Density (15°C, equilibrium pressure)

This function converts a density value at the observed temperature and pressure to the density value at 15°C and the equilibrium pressure (typically 0 bar(g)) or vice versa. The temperature conversion is according to API-2540, Tables 53A/54A (Generalized Crude Oils) and 53B/54B (Refined Oil Products) and API MPMS 11.1 Chapter XIV Table 53D/54D: 1984 (Lubricating Oils), while the volume correction for pressure according to API MPMS 11.2.1M.

An iterative calculation needs to be applied to convert the observed density to the value at base conditions.

NOTE: this function is a combination of API2540 and API 11.2.1M. For the calculation from observed to standard conditions an iterative calculation is required. The rounding and truncating of input and intermediate values is implemented such that the example calculations as specified in both standards are exactly reproduced.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 53A -Generalized Crude Oils, Correction of Observed Density to Density at 15°C - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 54A -Generalized Crude Oils, Correction of Volume to 15°C against Density at 15°C- First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 53B -Generalized Products, Correction of Observed Density to Density at 15°C - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 54B -Generalized Products, Correction of Volume to 15°C against Density at 15°F - First Edition, August 1980
- API MPMS 11.1 Volume XIV Table 53D Generalized Lubricating Oils, Correction of Observed Density to Density at 15°C - January 1982
- API MPMS 11.1 Volume XIV Table 54D Generalized Lubricating Oils, Correction of Volume to 15°C against Density at 15°F - January 1982
- API MPMS 11.2.1M Compressibility Factors for Hydrocarbons: 638 - 1074 Kilograms per Cubic Meter Range - First Edition, August 1984

Function inputs	Remark	EU	SW tag	Range	Defaul
Name	Optional tag name, tag description and tag group				
Input density	Meaning depends on the input 'Conversion method'.	kg/m3		01300	0
	'Conversion method' = 1				
	Density at the observed temperature and pressure				
	'Conversion method' = 2				
	Density at 15 °C and the equilibrium pressure.				
Observed temperature		°C		-100200	15
Observed pressure		bar(g)		-1150	0
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on density at 15 °C				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API 2540 rounding	0: Disabled		API2540RND	-	0
5	The calculations are performed with full precision and the final CTL value is				
	rounded as specified by input 'CTL decimal places'				
	1: Enabled for computational value				
	API-2540 rounding and truncating rules are applied and, in case of				
	conversion method 2 (standard to observed), the computational value for				
	CTL as specified in Table 54 is used, meaning that the CTL value has:				
	4 decimal places if CTL >=1				
	5 decimal places if CTL < 1.				
	2: Enabled for table value				
	API-2540 rounding and truncating rules are applied and, in case of				
	conversion method 2 (standard to observed), the table value for CTL as				
	specified in Table 54 meaning that the CTL value has 4 decimal places in all				
	cases				
	3: Enabled with 5 decimal places				
	API-2540 rounding and truncating rules are applied, and, in case of				
	conversion method 2 (standard to observed), the CTL value has 5 decimal				
	places in all cases.				
	Note: although not strictly in accordance with the standard, this option is				
	more commonly used than option 'Enabled for computational value'				
	Note: for conversion type 1 'From observed to standard conditions' the CTL				
	factor is rounded to 6 decimal places when input 'API 2540 rounding' > 0, as				
	in accordance with table 53.				
Hydrometer correction	Only applies for conversion method	-	HYDROCOR		0
	'1: From observed to standard conditions'				
	0: Disabled				
	1: Enabled				

Function inputs	Remark	EU	SW tag	Range	Default
API 11.2.1M rounding	0: Disabled	-	API1121RND		0
	The calculation of the compressibility factor F is performed with full				
	precision.				
	1: Enabled				
	API-MPMS 11.2.1M rounding and truncating rules are applied. The				
	compressibility factor F is rounded to 3 decimal places as specified in the				
	standard.				
Equilibrium pressure	The equilibrium pressure is considered to be 0 bar(g) for liquids which have	bar(g)	EQUIPRES	0150	0
	an equilibrium pressure less than atmospheric pressure (in compliance with				
	API MPMS 12.2 par. 12.2.5.4)				
Conversion method	1: From observed to standard conditions		CONVERSION		1
	2: From standard to observed conditions				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Output density	Meaning depends on the input 'Conversion method'.	kg/m3	DENS		0
	'Conversion method' = 1				
	Density at 15 °C and the equilibrium pressure.				
	'Conversion method' = 2				
	Density at the observed temperature and pressure				
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API2540 rounding"				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.1M rounding"				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
K0	Actual value of constant K0 used for CTL calculation	-	К0		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
K2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor	1/°C	ALPHA		0
F	Compressibility factor	-	F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual	-	PRDCUR		0
	selected product of tables 53B/54B (enumerative value as defined for input				
	'Product'), else the output is set equal to input 'Product'.				
CTL calc out of range	With respect to the standard used for the calculation of CTL the combination				0
	of input values is:				
	0: In Range				
	1: Out of Range			CTLOOR	
CPL calc out of range	With respect to the standard used for the calculation of CPL the combination				0
	of input values is:				
	0: In Range				
	1: Out of Range			CPLOOR	

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the density at reference conditions:

- 1 First the inputs are rounded in accordance with the API2540 standard, provided that API2540 rounding is enabled.
- 2 The hydrometer correction on the input density is applied, provided that this correction is enabled
- 3 At the start of the iteration the density at [15 °C, equilibrium pressure] is set equal to the observed density and the initial CPL value is set to 1.
- 4 When the type of product is set to 'B Auto select' (automatic selection of the refined product range) the KO, K1 and K2 factors are determined based on the density at [15 °C, equilibrium pressure]. The Transition area is only taken in consideration in the 2nd iteration loop, as specified in the standard.
- 5 The Alpha factor is calculated according from the density at [15 °C, equilibrium pressure] and the K0, K1 and K2 factor. If

API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 53.

- 6 The CTL value is calculated according to API-2540 Table 53 from the Alpha factor and the differential temperature (= observed temperature – 15°C). If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 53.
- 7 Depending on the type of API2540 rounding the calculated CTL value is rounded to 6 decimal places or not rounded at all.
- 8 The density at [15 °C, equilibrium pressure] is calculated by dividing the observed density by the new CTL value and the CPL value from the previous iteration.
- 9 The compressibility factor is calculated according to API MPMS 11.2.1M from the density at [15 °C, equilibrium pressure] and the 'Observed temperature'. If API 11.2.1M rounding is enabled then the density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 10 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.

- 11 The density at [15°C, equilibrium pressure] is calculated by dividing the observed density by CTL and the new CPL value.
- 12 If API2540 rounding is enabled then the density at [15°C, equilibrium pressure] value is rounded to 3 decimal places as specified in the standard.
- 13 Steps 4 through 12 are repeated taking the density value from step 12 as the starting value until the absolute difference between two consecutive density values is either 0.05 (or 0.07 for the transition area) or 0.000001, depending of API2540 rounding being enabled or not.
- 14 For refined products the entire iteration loop is repeated if the density at [15°C, equilibrium pressure] appears to be in a different product region than the observed input density. This is required because a different product region means different K0, K1 and K2 factors.
- 15 When API2540 rounding is enabled, the final density at [15°C, equilibrium pressure] is rounded to 1 decimal place.

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the density at observed conditions:

- 1 First the inputs are rounded in accordance with the API2540 standard, provided that API2540 rounding is enabled.
- 2 When the type of product is set to 'B Auto select' (automatic selection of the refined product range) the K0, K1 and K2 factors are determined based on the input density
- 3 The Alpha factor is calculated according from the input density and the KO, K1 and K2 factor. If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 54.
- 4 The CTL value is calculated according to API-2540 Table 54 from the Alpha factor and the differential temperature (= observed temperature – 15°C If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 54.
- 5 Depending on the type of API2540 rounding the calculated CTL value is rounded to 4 or 5 decimal places or not rounded at all.
- 6 The compressibility factor is calculated according to API MPMS 11.2.1M from the input density and temperature'. If API 11.2.1M rounding is enabled then the input density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 7 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 8 The density at [15°C, equilibrium pressure] is calculated by multiplying the input density by the CTL and the CPL values.

fxAPI_Dens15C_NGL_LPG

Density (T, P) <--> Density (15°C, Pe)

This function converts the density value at the observed temperature and pressure to the density value at 15°C and the equilibrium pressure or vice versa.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-27), while the pressure correction is according to API MPMS 11.2.2M:1984.

The calculation of the equilibrium pressure is according to GPA TP-15 (API MPMS 11.2.2 Addendum:1994).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- API MPMS Chapter 11.2.2M 1986 (Compressibility Factors for Hydrocarbons: 350-637 kg/m3 Density (15°C) and -46°C to 60°C)
- API MPMS 11.2.5: A Simplified Vapor Pressure Correlation for Commercial NGLs, September 2007
- GPA TP-15: A Simplified Vapor Pressure Correlation for Commercial NGLs, September 2007 (also covers GPA TP-15 1988)
- API MPMS 11.2.2 Addendum : Compressibility Factors for Hydrocarbons: Correlation of Vapor Pressure for Commercial Natural Gas Liquids (same as GPA TP-15:1988)

Function inputs

Name	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input density	Depending on the conversion method this represents the density either at the observed temperature and pressure or at 15 °C and the equilibrium pressure	-		0750	0
Observed temperature	Temperature at which the density is observed	°C		-100150	15
Observed pressure	Pressure at which the density is observed	bar(a)		-1200	0
API 11.2.4 rounding	0: Disabled The calculations are performed with full precision and the output values are not rounded 1: Enabled The related values are rounded as defined in the standard		API1124RND		0
API 11.2.2M rounding	0: Disabled The calculations are performed with full precision and the output values are not rounded 1: Enabled The related values are rounded as defined in the standard		API1122RND		0
Equilibrium pressure mode	1: Use Input The value of input 'Equilibrium pressure value' is used for the calculation of CPL 2: GPA TP-15 The equilibrium pressure is calculated in accordance with GPA TP-15		EQUIPMODE		2
Equilibrium pressure value	Only used when input 'Equilibrium pressure mode' is set to 'Use input'. The value will be used for the calculation of the CPL	bar(a)	EQUIPINP		0
GPA TP-15 rounding	Only used when 'Equilibrium pressure mode is set to 'GPA TP-15' O: Disabled Full precision (no rounding and truncating applied) 1: Enabled Rounding as defined in ' GPA TP15:1988 / API MPMS 11.2.2 Addendum':1994	-	TP15RND		0
P100 Correlation	Only used when 'Equilibrium pressure mode is set to 'GPA TP-15' O: Disabled The standard correlation is commonly used for pure products such as propane, butane and natural gasoline. It only requires the relative density and the temperature to calculate the vapor pressure 1: Enabled The improved correlation requires the vapor pressure at 100°F (37.8 °C). This method is better suited for varied NGL mixes Where different product mixes could have the same specific gravity but different equilibrium pressures.	-	P100CORR		0
Vapor pressure at 100°F	Only used when 'Equilibrium pressure mode is set to 'GPA TP-15' and the P100 correlation is enabled.	bar(a)	EQUIP100F	0200	0
Conversion method	1: From observed to standard conditions 2: From standard to observed conditions		CONVMETH		1

Function outputs

Name	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	

Name	Remark	EU	SW tag	Alarm	Fallback
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Output density	Depending on the conversion method this represents the density either at 15 °C	kg/m3	DENS		0
	and the equilibrium pressure or the observed temperature and pressure				
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API 11.2.4 rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.2M rounding'				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
:	Compressibility factor	1/bar	F		0
	The output value will be either rounded or not depending input 'API rounding'				
Equilibrium pressure	The equilibrium pressure calculated by GPA TP-15	bar(a)	EQUIPCUR		0
	Will be set to 0 when equilibrium pressure is below atmospheric pressure				
CTL calc out of range	With respect to the API 11.2.4 standard the combination of input values is:				0
	0: In Range				
	1: Out of Range			CTLOOR	
	The following range checks apply:				
	Conversion method 1: observed -> standard				
	0.21 <= RD <= 0.74				
	with RD = Input density / 999.016/CPL				
	-46 <= T <= 93 °C				
	Table 23E reference fluid ranges				
	Conversion method 1: standard -> observed				
	351.7 <= Input density <= 687.8 kg/m3				
	-46 <= T <= 93 °C				
	Table 23E reference fluid ranges				
CPL calc out of range	With respect to API 11.2.2M the combination of input values is:				0
	0: In Range				
	1: Out of Range			CPLOOR	
	The following range checks apply:				
	350 <= Density 15 °C <= 637 kg/m3				
	-46 °C <= T <= 60 °C				
GPA TP-15 out of range	Only set when the GPA TP-15 calculation is enabled	-			0
	With respect to the GPA TP-15 standard the combination of input values is:				
	0: In Range				
	1: Out of Range				
	The following range checks apply:			TP15OOR	
	For lower range:				
	0.350 <= RD60 < 0.425				
	-50 to (695.51*RD60 - 155.51) °F				
	Higher range:				
	0.425 <= RD60 <= 0.676				
	-50 to 140 °F				
	with RD60 being the relative density at 60°F				

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the density at 15 °C and the equilibrium pressure.

- 1 When API 11.2.4 rounding is enabled, the input density and temperature values are rounded in accordance with the standard
- 2 At the start of the iteration the density at [15 °C, equilibrium pressure] is set equal to the observed density and the CPL value is set to 1.
- 3 First the density corrected for pressure is calculated by dividing the observed density by the CPL value.
- 4 The relative density corrected for pressure is calculated from the density corrected for pressure
- 5 The relative density at [60 °F, equilibrium pressure] is calculated from the relative density corrected for pressure and the observed temperature according to Table 23E
- 6 The relative density at [15 °C, equilibrium pressure] is calculated from the relative density at [60 °F, equilibrium pressure] converted to 15 °C according to Table 24E

- 7 The density at [15 °C, equilibrium pressure] is calculated from the relative density at [15 °C, equilibrium pressure]
- 8 The CTL value is calculated by dividing the density corrected for pressure by the density at [15 °C, equilibrium pressure]
- 9 Depending on the value of input 'Equilibrium pressure mode', either value of input 'Equilibrium pressure value' is used or the equilibrium pressure (vapor pressure) is calculated according to GPA TP-15. Whether the GPA TP-15 rounding and truncation rules are applied is dictated by input 'GPA-TP15 rounding'
- 10 The compressibility factor F is calculated according to API MPMS 11.2.2M from the density at [15 °C, equilibrium pressure] and the 'Observed temperature', with, depending on input API 11.2.2M, rounding and truncation according to the standard.
- 11 The CPL value is calculated from the compressibility factor, the equilibrium pressure and the 'Observed pressure' input value.
- 12 The new value for density at [15°C, equilibrium pressure] is calculated by dividing the observed density by the CTL and CPL values.
- 13 Steps 3 though 12 are repeated taking the density value from step 12 as the staring value until the absolute difference between two consecutive density values is less than the

convergence limit.

To avoid convergence problems different convergence limits are applied, depending on the whether API 11.2.2M and/or GPA TP-15 rounding is applied: If API 11.2.2M rounding is enabled -> Limit = 0.05 kg/m3 else if GPA TP-15 rounding is enabled -> Limit = 0.005 kg/m3

- else -> Limit = 0.00001 kg/m3
- 14 If API 11.2.4 rounding is enabled, then the density at [15°C, equilibrium pressure] is rounded to 0.1

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the density at observed conditions:

- 1 When API 11.2.4 rounding is enabled, the input density and temperature values are rounded in accordance with the standard
- 2 The CTL value and the relative density at [60 °F, equilibrium pressure] are calculated according to API MPMS 11.2.4 (GPA TP-27) Table 60E from the density at [15 °C, equilibrium pressure] and the 'Observed temperature'.
- 3 Depending on the value of input 'Equilibrium pressure mode', either value of input 'Equilibrium pressure value' is used or the equilibrium pressure (vapor pressure) is calculated according to GPA TP-15.
- 4 The compressibility factor is calculated according to API MPMS 11.2.2M from the density at [15 °C, equilibrium pressure] and the 'Observed temperature'.
- 5 The CPL value is calculated from the compressibility factor, the equilibrium pressure and the 'Observed pressure' input value.
- 6 If API 11.2.4 rounding is enabled, then the CTL value is rounded at [60°F, equilibrium pressure] is rounded to 0.00001
- 7 The density at the observed conditions is calculated by multiplying the density at [15 °C, equilibrium pressure] by the CTL value and the CPL value.

fxAPI_Dens20C_NGL_LPG

Density (T, P) <--> Density (20°C, Pe)

This function converts the density value at the observed temperature and pressure to the density value at 20°C and the equilibrium pressure or vice versa.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-27), while the pressure correction is according to API MPMS 11.2.2M:1984.

The calculation of the equilibrium pressure is according to GPA TP-15 (API MPMS 11.2.2 Addendum:1994).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- API MPMS Chapter 11.2.2M 1986 (Compressibility Factors for Hydrocarbons: 350-637 kg/m3 Density (15°C) and -46°C to 60°C)
- API MPMS 11.2.5: A Simplified Vapor Pressure Correlation for Commercial NGLs, September 2007
- GPA TP-15: A Simplified Vapor Pressure Correlation for Commercial NGLs, September 2007 (also covers GPA TP-15 1988)
- API MPMS 11.2.2 Addendum : Compressibility Factors for Hydrocarbons: Correlation of Vapor Pressure for Commercial Natural Gas Liquids (same as GPA TP-15:1988)

Function inputs

Name	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input density	Depending on the conversion method this represents the density either at the	kg/m3		0750	0
	observed temperature and pressure or at 20 $^\circ C$ and the equilibrium pressure				
Observed temperature	Temperature at which the density is observed	°C		-100150	20
Observed pressure	Pressure at which the density is observed	bar(a)		-1200	0
API 11.2.4 rounding	0: Disabled		API1124RND		0
	The calculations are performed with full precision and the output values are not				
	rounded				
	1: Enabled				
	The related values are rounded as defined in the standard				
API 11.2.2M rounding	0: Disabled		API1122RND		0
	The calculations are performed with full precision and the output values are not				
	rounded				
	1: Enabled				
	The related values are rounded as defined in the standard				
Equilibrium pressure	1: Use Input		EQUIPMODE		2
mode	The value of input 'Equilibrium pressure value' is used for the calculation of CPL				
	2: GPA TP-15				
	The equilibrium pressure is calculated in accordance with GPA TP-15				
Equilibrium pressure value	Only used when input 'Equilibrium pressure mode' is set to 0.	bar(a)	EQUIPINP		0
	The value will be used for the calculation of the CPL				
GPA TP-15 rounding	0: Disabled	-	TP15RND		0
	Full precision (no rounding and truncating applied)				
	1: Enabled				
	Rounding as defined in ' GPA TP15:1988 / API MPMS 11.2.2 Addendum':1994				
P100 Correlation	0: Disabled	-	P100CORR		0
	The standard correlation is commonly used for pure products such as propane,				
	butane and natural gasoline. It only requires the relative density and the temperature				
	to calculate the vapor pressure				
	1: Enabled				
	The improved correlation requires the vapor pressure at 100°F (37.8 °C). This method				
	is better suited for varied NGL mixes Where different product mixes could have the				
	same specific gravity but different equilibrium pressures.				
Vapor pressure at 100°F		bar(a)	EQUIP100F	0200	0
Conversion method	1: From observed to standard conditions		CONVMETH		1
	2: From standard to observed conditions				

Function outputs

Name	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	Outputs will be set to fallback values				
	2: Calculation error			CALC	
	Outputs will be set to fallback values				
	3: No convergence within 15 iterations			NOCONV	
	Outputs will be set to values of last iteration				

Name	Remark	EU	SW tag	Alarm	Fallback
Output density	Depending on the conversion method this represents the density either at 20 °C and the equilibrium pressure or the observed temperature and pressure	kg/m3	DENS		0
CTL	Volume correction factor for temperature.	_	CTL		1
CIL	Value will be rounded according to input 'API 11.2.4 rounding'		CIL		1
CPL	Volume correction factor for pressure		CPL		1
CFL	Value will be rounded according to input 'API 11.2.2M rounding'		CFL		1
CTPL	Combined volume correction factor	-	CTPL		1
0112	CTPL = CTL * CPL		CHE		-
F	Compressibility factor	1/bar	F		0
	The output value will be either rounded or not depending input 'API rounding'	-,			0
Equilibrium pressure	The equilibrium pressure calculated by GPA TP-15	bar(a)	EQUIPCUR		0
Equilibrium prosoure	Will be set to 0 when equilibrium pressure is below atmospheric pressure		_qo co		0
CTL calc out of range	With respect to the API 11.2.4 standard the combination of input values is:				0
	0: In Range				0
	1: Out of Range				
	The following range checks apply:			CTLOOR	
	Conversion method 1: observed -> standard				
	0.21 <= RD <= 0.74				
	with RD = Input density / 999.016/CPL				
	-46 <= T <= 93 °C				
	Table 23E reference fluid ranges				
	Conversion method 1: standard -> observed				
	331.7 <= Input density <= 683.6 kg/m3				
	-46 <= T <= 93 °C				
	Table 23E reference fluid ranges				
CPL calc out of range	With respect to API 11.2.2M the combination of input values is:				0
5	0: In Range				
	1: Out of Range			CPLOOR	
	The following range checks apply:				
	350 <= Density 15 °C <= 637 kg/m3				
	-46 °C <= T <= 60 °C				
GPA TP-15 out of	Only set when the GPA TP-15 calculation is enabled	-			0
range	With respect to the GPA TP-15 standard the combination of input values is:				0
lange	0: In Range				
	1: Out of Range				
	The following range checks apply:			TP15OOR	
	For lower range:				
	0.350 <= RD60 < 0.425				
	-50 to (695.51*RD60 - 155.51) °F				
	Higher range:				
	0.425 <= RD60 <= 0.676				
	-50 to 140 °F				
	with RD60 being the relative density at 60°F				

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the density at 20 °C and the equilibrium pressure.

- 1 When API 11.2.4 rounding is enabled, the input density and temperature values are rounded in accordance with the standard
- 2 At the start of the iteration the density at [20 °C, equilibrium pressure] is set equal to the observed density and the CPL value is set to 1.
- 3 First the density corrected for pressure is calculated by dividing the observed density by the CPL value.
- 4 The relative density corrected for pressure is calculated from the density corrected for pressure
- 5 The relative density at [60 °F, equilibrium pressure] is calculated from the relative density corrected for pressure and the observed temperature according to Table 23E
- 6 The relative density at [20 °C, equilibrium pressure] is calculated from the relative density at [60 °F, equilibrium pressure] converted to 20 °C according to Table 24E
- 7 The density at [20 °C, equilibrium pressure] is calculated from the relative density at [20 °C, equilibrium pressure]

- 8 The CTL value is calculated by dividing the density corrected for pressure by the density at [20 °C, equilibrium pressure]
- 9 Depending on the value of input 'Equilibrium pressure mode', either value of input 'Equilibrium pressure value' is used or the equilibrium pressure (vapor pressure) is calculated according to GPA TP-15. Whether the GPA TP-15 rounding and truncation rules are applied is dictated by input 'GPA-TP15 rounding'
- 10 API 11.2.2M requires the density at [15 °C, equilibrium pressure]. For this purpose the relative density at [15 °C, equilibrium pressure] is calculated according to Table 24E from the relative density at [60 °F, equilibrium pressure] and at 15 °C. This relative density value is then converted to the density at [15 °C, equilibrium pressure].
- 11 The compressibility factor F is calculated according to API MPMS 11.2.2M from the density at [15 °C, equilibrium pressure] and the 'Observed temperature', with, depending on input API 11.2.2M, rounding and truncation according to the standard.
- 12 The CPL value is calculated from the compressibility factor, the equilibrium pressure and the 'Observed pressure' input value.
- 13 The new value for density at [20°C, equilibrium pressure] is calculated by dividing the observed density by the CTL and CPL values.

14 Steps 2 though 6 are repeated taking the density value from step 6 as the staring value until the absolute difference between two consecutive density values is less than the convergence limit.

To avoid convergence problems different convergence limits are applied, depending on the whether API 11.2.2M and/or GPA TP-15 rounding is applied:

If API 11.2.2M rounding is enabled -> Limit = 0.05 kg/m3 else if GPA TP-15 rounding is enabled -> Limit = 0.005 kg/m3 else -> Limit = 0.00001 kg/m3

15 If API 11.2.4 rounding is enabled, then the density at [20°C, equilibrium pressure] is rounded to 0.1

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the density at observed conditions:

- 1 When API 11.2.4 rounding is enabled, the input density and temperature values are rounded in accordance with the standard
- 2 The CTL value and the relative density at [60 °F, equilibrium pressure] are calculated according to API MPMS 11.2.4 (GPA TP-27) Table 54 from the density at [20 °C, equilibrium pressure] and the 'Observed temperature'.
- 3 Depending on the value of input 'Equilibrium pressure mode', either value of input 'Equilibrium pressure value' is used or the equilibrium pressure (vapor pressure) is calculated according to GPA TP-15.
- 4 API 11.2.2M requires the density at [15 °C, equilibrium pressure]. For this purpose the relative density at [15 °C, equilibrium pressure] is calculated according to Table 24E from the relative density at [60 °F, equilibrium pressure] and at 15 °C. This relative density value is then converted to the density at [15 °C, equilibrium pressure].
- 5 The compressibility factor is calculated according to API MPMS 11.2.2M from the density at [15 °C, equilibrium pressure] and the 'Observed temperature'.
- 6 The CPL value is calculated from the compressibility factor, the equilibrium pressure and the 'Observed pressure' input value.
- 7 If API 11.2.4 rounding is enabled, then the CTL value is rounded at [60°F, equilibrium pressure] is rounded to 0.00001
- 8 The density at the observed conditions is calculated by multiplying the input density by the CTL value and the CPL value.

fxAPI_Gravity60F_1952

°API (T, P) <--> °API (60°F, equilibrium pressure)

This function calculates the API gravity value at the observed temperature and pressure to the API gravity value at 60°F and the equilibrium pressure (typically 0 psig) or vice versa.

The volume correction for temperature is according to 1952 API Table 5 and 6, while the volume correction for pressure is according to API MPMS 11.2.1. **NOTE:** this function is a combination of the API 1952 Tables and API 11.2.1. For the calculation from observed to standard conditions an iterative calculation is required. The rounding and truncating of input and intermediate values is implemented such that the example calculations as specified in both standards are exactly reproduced.

Compliance

- ASTM-IP Petroleum Measurement Tables, American Edition, United States Units of Measurement, 1952
- API MPMS 11.2.1 Compressibility Factors for Hydrocarbons: 0 - 90°API Gravity Range - First Edition, August 1984

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input API gravity	Depending of the conversion method this represents the API gravity at either	°API		-20120	0
	the observed temperature and pressure or at 60 °F and the equilibrium				
	pressure				
Observed temperature	Temperature at which the API gravity is observed	°F		-100400	60
Observed pressure	Pressure at which the API gravity is observed	psig		-102000	0
API 11.2.1 rounding	0: Disabled	-	API1121RND		0
	The calculation of the compressibility factor F is performed with full				
	precision				
	1: Enabled				
	API-MPMS 11.2.1 rounding and truncating rules are applied. The				
	compressibility factor F is rounded to 3 decimal places as specified in the				
	standard.				
Equilibrium pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an	psig	EQUIPRES	02000	0
	equilibrium pressure less than atmospheric pressure (in compliance with API				
	MPMS 12.2 par. 12.2.5.4)				
Conversion method	1: From observed to standard conditions		CONVERSION		1
	2: From standard to observed conditions				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
	3: No convergence			NOCONV	
Output API gravity	Depending of the conversion method this represents the API gravity at either at 60 °F	°API	API		0
	and the equilibrium pressure or the observed temperature and pressure				
CTL	Volume correction factor for temperature.	-	CTL		1
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.1 rounding''				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
F	Compressibility factor	-	F		0
CTL calc out of range	With respect to the standard used for the calculation of CTL the combination of input				0
	values is:				
	0: In Range				
	1: Out of Range			CTLOOR	
CPL calc out of range	With respect to the standard used for the calculation of CPL the combination of input				0
	values is:				
	0: In Range				
	1: Out of Range			CPLOOR	

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the API Gravity at standard conditions:

- At the start of the iteration the initial value for API Gravity at [60 °F, equilibrium pressure] is set to the Observed API Gravity. The initial CPL value is set to 1.
- 2 The CTL value is determined from the API Gravity at [60 °F, equilibrium pressure] according to API 1952 Table 6.
- 3 The API Gravity at [60 °F, equilibrium pressure] is calculated from the Observed API gravity, the new CTL value and the CPL value from the previous iteration.
- 4 Because API 11.2.1 requires the API gravity value at 60 °F, the API gravity at [60 °F, equilibrium pressure] is calculated from the API gravity at [60 °F, equilibrium pressure].

- 5 The compressibility factor is calculated according to API MPMS 11.2.1 from the API gravity at [60 °F, equilibrium pressure] and the 'Observed temperature'. If API 11.2.1 rounding is enabled then the API gravity and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 6 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 7 The API Gravity at [60°F, equilibrium pressure] is calculated by dividing the Observed API Gravity by the CTL and the new CPL value.
- 8 Steps 2 through 7 are repeated taking the API gravity value from step 7 as the start value for the next iteration until the absolute difference between two consecutive API gravity values is 0.01.

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the API Gravity at observed conditions:

- 1 The CTL value is calculated according to API 1952 Table 6
- 2 Because API 11.2.1 requires the API gravity value at 60 °F, the API gravity at 60 °F is calculated from the 'Input API Gravity'.
- 3 The compressibility factor is calculated according to API MPMS 11.2.1 from the API gravity and the 'Observed temperature'. If API 11.2.1 rounding is enabled then the input density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 4 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 5 The output API Gravity (at observed temperature and pressure) is calculated from the input API Gravity and the CTL and the CPL values.

fxAPI_Gravity60F_1980

°API (T, P) <--> °API (60°F, equilibrium pressure)

This function calculates the API gravity value at the observed temperature and pressure to the API gravity value at 60°F and the equilibrium pressure (typically 0 psig) or vice versa. The volume correction for temperature is according to API-2540, Tables 5/6A (Generalized Crude Oils) and 5/6B (Refined Oil Products) and API MPMS 11.1 Chapter XIII Table 5D: 1984 (Lubricating Oils), while the volume correction for pressure according to API MPMS 11.2.1.

NOTE: this function is a combination of API2540 and API 11.2.1. For the calculation from observed to standard conditions an iterative calculation is required. The rounding and truncating of input and intermediate values is implemented such that the example calculations as specified in both standards are exactly reproduced.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 5A -Generalized Crude Oils, Correction of Observed API Gravity to API Gravity at 60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 5B -Generalized Products, Correction of Observed API Gravity to API Gravity at 60°F- First Edition, August 1980
- API MPMS 11.1 Volume XIII Table 5D Generalized Lubricating Oils, Correction of Observed API Gravity to API Gravity at 60°F
 January 1982
- API MPMS 11.1 Volume X (API Standard 2540) Table 6A -Generalized Crude Oils, Correction of Volume to 60°F against API Gravity at 60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 6B -Generalized Products, Correction of Volume to 60°F against API Gravity at 60°F - First Edition, August 1980
- API MPMS 11.1 Volume XIII Table 6D Generalized Lubricating Oils, Correction of Volume to 60°F against API Gravity at 60°F F - January 1982
- API MPMS 11.2.1 Compressibility Factors for Hydrocarbons: 0
 90°API Gravity Range First Edition, August 1984

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input API gravity	Depending of the conversion method this represents the API gravity at either the	°API		-20120	0
	observed temperature and pressure or at 60 °F and the equilibrium pressure				
Observed temperature	Temperature at which the API gravity is observed	°F		-50400	60
Observed pressure	Pressure at which the API gravity is observed	psig		-102000	0
Product	1: A - Crude Oil		PRDTYP	-	1
	2: B - Auto select				
	Selection based on °API at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API-2540 rounding	0: Disabled		API2540RND	-	0
	The calculations are performed with full precision and the final CTL value is				
	rounded as specified by input 'CTL decimal places'				
	1: Enabled for computational value				
	API-2540 rounding and truncating rules are applied and, in case of conversion				
	method 2 (standard to observed), the computational value for CTL as specified in				
	Table 6 is used, meaning that the CTL value has:				
	4 decimal places if CTL >=1				
	5 decimal places if CTL < 1.				
	2: Enabled for table value				
	API-2540 rounding and truncating rules are applied and, in case of conversion				
	method 2 (standard to observed), the table value for CTL as specified in Table 6				
	meaning that the CTL value has 4 decimal places in all cases				
	3: Enabled with 5 decimal places				
	API-2540 rounding and truncating rules are applied, and, in case of conversion				
	method 2 (standard to observed), the CTL value has 5 decimal places in all cases.				
	Note: although not strictly in accordance with the standard, this option is more				
	commonly used than option 'Enabled for computational value'				
	Note: for conversion type 1 'From observed to standard conditions' the CTL factor				
	is rounded to 6 decimal places when input 'API 2540 rounding' > 0, as in accordance				
	with table 5.				
Hydrometer correction	Only applies for conversion method	-	HYDROCOR		0
	'1: From observed to standard conditions'				
	0: Disabled				
	1: Enabled				
API 11.2.1 rounding	0: Disabled	-	API1121RND		0
5	The calculation of the compressibility factor F is performed with full precision				
	1: Enabled				
	API-MPMS 11.2.1 rounding and truncating rules are applied. The compressibility				
	factor F is rounded to 3 decimal places as specified in the standard.				

Function inputs	Remark	EU	SW tag	Range	Default
Equilibrium pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an	psig	EQUIPRES	02000	0
	equilibrium pressure less than atmospheric pressure (in compliance with API MPMS				
	12.2 par. 12.2.5.4)				
Conversion method	1: From observed to standard conditions		CONVERSION		1
	2: From standard to observed conditions				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range		0.0	FIOOR	-
	2: Calculation error			CALC	
	3: No convergence			NOCONV	
Dutput API gravity	Depending of the conversion method this represents the API gravity at either at 60	°API	API		0
	°F and the equilibrium pressure or the observed temperature and pressure				
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API2540 rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.1 rounding'"				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
КО	Actual value of constant K0 used for CTL calculation	-	КО		0
К1	Actual value of constant K1 used for CTL calculation	-	K1		0
К2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor	1/°F	ALPHA		0
F	Compressibility factor	-	F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	-	PRDCUR		0
	product of table 5B / 6B (enumerative value as defined for input 'Product'), else the				
	output is set equal to input 'Product'.				
CTL calc out of range	With respect to the standard used for the calculation of CTL the combination of				0
-	input values is:				
	0: In Range				
	1: Out of Range			CTLOOR	
CPL calc out of range	With respect to the standard used for the calculation of CPL the combination of				0
5-	input values is:				
	0: In Range				
	1: Out of Range			CPLOOR	

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the API gravity at standard conditions:

- 1 First the inputs are rounded in accordance with the API2540 standard, provided that API2540 rounding is enabled.
- 2 The observed density [kg/m3] is calculated from the observed API gravity
- 3 The hydrometer correction on the observed density is applied, provided that this correction is enabled
- 4 At the start of the iteration the initial value for density and API gravity at [60 °F, equilibrium pressure] is set to respectively the observed density and the observed API gravity. The initial CPL value is set to 1.
- 5 When the type of product is set to 'B Auto select' (automatic selection of the refined product range) the KO, K1 and K2 factors are determined based on the API gravity at [60 °F, equilibrium pressure]. The Transition area is only taken in consideration in the 2nd iteration loop, as specified in the standard.
- 6 The Alpha factor is calculated according from the density at [60 °C, equilibrium pressure] and the K0, K1 and K2 factor. If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 5.
- 7 The CTL value is calculated according to API-2540 Table 5 from the Alpha factor and the differential temperature (= observed temperature – 60°F). If API2540 rounding is enabled,

then the intermediate results are rounded or truncated as specified API-2540 Table 5.

- 8 Depending on the type of API2540 rounding the calculated CTL value is rounded to 6 decimal places or not rounded at all.
- 9 The density at [60 °F, equilibrium pressure] is calculated by dividing the observed density by the new CTL value and the CPL value from the previous iteration.
- 10 The API gravity at [60 °F, equilibrium pressure] is calculated from the density at [60 °F, equilibrium pressure]
- 11 The compressibility factor is calculated according to API MPMS 11.2.1 from the API gravity at [60 °F, equilibrium pressure] and the 'Observed temperature'. If API 11.2.1 rounding is enabled then the API gravity and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 12 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 13 The density at [60°F, equilibrium pressure] is calculated by dividing the observed density by CTL and the new CPL value.
- 14 If API2540 rounding is enabled then the density at [60°F, equilibrium pressure] value is rounded to 3 decimal places as specified in the standard.
- 15 The API gravity at [60 °F, equilibrium pressure] is calculated from the density at [60 °F, equilibrium pressure]
- 16 If API2540 rounding is enabled then the API gravity at [60°F, equilibrium pressure] value is rounded to 1 decimal place as specified in the standard.

- 17 Steps 5 through 16 are repeated taking the density value from step 14 as the start value for the next iteration until the absolute difference between two consecutive density values is either 0.05 (or 0.07 for the transition area) or 0.000001, depending of API2540 rounding being enabled or not.
- 18 For refined products the entire iteration loop is repeated if the API gravity at [60°F, equilibrium pressure] appears to be in a different product region than the observed API gravity. This is required because a different product region means different K0, K1 and K2 factors.

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the API gravity at observed conditions:

- 1 First the inputs are rounded in accordance with the API2540 standard, provided that API2540 rounding is enabled.
- 2 The density at [60°F, equilibrium pressure] is calculated from the input API gravity
- 3 When the type of product is set to 'B Auto select' (automatic selection of the refined product range) the K0, K1 and K2 factors are determined based on the input API gravity
- 4 The Alpha factor is calculated according from the density at [60°F, equilibrium pressure] and the K0, K1 and K2 factor. If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 6.
- 5 The CTL value is calculated according to API-2540 Table 6 from the Alpha factor and the differential temperature (= observed temperature – 60°F). If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 6.
- 6 Depending on the type of API2540 rounding the calculated CTL value is rounded to 4 or 5 decimal places or not rounded at all.
- 7 The compressibility factor is calculated according to API MPMS 11.2.1 from the input density and temperature'. If API 11.2.1 rounding is enabled then the input density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 8 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 9 The API gravity at observed temperature and pressure is calculated from the input API gravity and the CTL and the CPL values.

fxAPI_MPMS_11_2_1

The API MPMS 11.2.1 standard consists of a printed table that contains compressibility factors to correct hydrocarbon volumes under pressure to the corresponding volumes at the equilibrium pressure for the metered temperature.

The table contains compressibility factors related to meter temperature and API gravity at 60°F.

From the compressibility factor the volume correction for pressure is calculated according to API MPMS 12.2.

Compliance

- API MPMS 11.2.1 Compressibility Factors for Hydrocarbons: 0 - 90°API Gravity Range - First Edition, August 1984
- API MPMS 12.2 Calculation of Liquid Petroleum Quantities Measured by Turbine or Displacement Meters

Boundaries

API MPMS 11.2.1 defines the following limits on the input values:

- 0 to 90 °API
- -20 to +200 °F
- 0 to 1500 psig.

API Rounding

The actual standard is the printed table. It also includes the 'Calculation Procedure' to obtain the table values based on the rounding and truncating of all input, intermediate and output values.

The function provides the option to either output the table value (including the full API rounding and truncating requirements) or to perform the calculation procedure without any rounding and truncating being applied.

Name	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
API60	API gravity at 60°F	°API		0120	0
Observed Temperature		°F		-50400	60
Observed Pressure		psig		-102000	0
Equilibrium Pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an equilibrium pressure less than atmospheric pressure (in compliance with API MPMS 12.2 par. 12.2.5.4)	psig	EQUIPRES	02000	0
API 11.2.1 rounding	0: Disabled The calculation of the compressibility factor F is performed with full precision. 1: Enabled API-MPMS 11.2.1 rounding and truncating rules are applied. The compressibility factor F is rounded to 3 decimal places as specified in the standard.		APIROUND	-	0

Name	Remark	EU			Fallback
Status	0: Normal		STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALERR	
CPL	Volume correction factor for pressure	-	CPL		1
	Note: to achieve compliance with API MPMS 12.2 the CPL value needs to be rounded				
	to 4 decimal places.				
F	Compressibility factor	1/psi	F		0
	The output value will rounded according to input 'API 11.2.1 rounding'				
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standards, depending on whether API rounding is enabled or not and on the actual number of decimal places for the CPL value (API MPMS 12.2 defines 4 decimal places for the CPL value).

The CPL value is calculated as follows (in compliance with API MPMS 12.2):

If Pe > 0 then

$$CPL = \frac{1}{1 - F \cdot (Po - Pe)}$$

With	:	
CPL	Volume correction	-
	factor for pressure	
F	Compressibility	1/p
	factor	si
Ро	Observed pressure	psig
Pe	Equilibrium	psig
	pressure	

Else

 $CPL = \frac{1}{1 - F \cdot Po}$

fxAPI_MPMS_11_2_1M

The API MPMS 11.2.1M standard consists of a printed table that contains compressibility factors to correct hydrocarbon volumes under pressure to the corresponding volumes at the equilibrium pressure for the metered temperature.

The table contains compressibility factors related to meter temperature and density at 15°C.

This metric standard corresponds with API MPMS 11.2.1 (the customary version).

Compliance

- 11.2.1M Compressibility Factors for Hydrocarbons: 638 1074 Kilograms per Cubic Meter Range - First Edition, August 1984
- API MPMS 12.2 Calculation of Liquid Petroleum Quantities Measured by Turbine or Displacement Meters

Data Limits

API MPMS 11.2.1M defines the following limits on the input values:

- 638 to 1074 kg/m3
- -30 to 90 °C
- 0 to 103 bar(g).

It is advised not to use the standard outside these limits.

Function inputs

Name	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 15°C		kg/m3		01300	0
Observed temperature		°C		-100200	15
Observed pressure		bar(g)		-1150	0
Equilibrium pressure	The equilibrium pressure is considered to be 0 bar(g) for liquids which have an equilibrium pressure less than atmospheric pressure (in compliance with API MPMS 12.2 par. 12.2.5.4)	bar(g)	EQUIPRES		0
API 11.2.1M rounding	0: Disabled The calculation of the compressibility factor F is performed with full precision 1: Enabled API-MPMS 11.2.1M rounding and truncating rules are applied. The compressibility factor F is rounded in accordance with the standard.	-	APIROUND		0

Function outputs

Name	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
CPL	Volume correction factor for pressure	-	CPL		1
	Note: to achieve compliance with API MPMS 12.2 the CPL value needs to be rounded to 4 decimal				
	places.				
F	Compressibility factor	1/bar	F		0
	The output value will be either rounded or not depending input 'API 11.2.1M rounding '				
Calculation out	With respect to the standard the input values are:	-		OOR	0
of range	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standards, depending on whether API rounding is enabled or not and on the actual number of decimal places for the CPL value (API MPMS 12.2 defines 4 decimal places for the CPL value).

The CPL value is calculated as follows (in compliance with API MPMS 12.2):

If Pe > 0 then

 $CPL = \frac{1}{1 - F \cdot (Po - Pe)}$

Else

$$CPL = \frac{1}{1 - F \cdot Po}$$

CPL	Volume correction factor for pressure	-
F	Compressibility factor	1/bar
Ро	Observed pressure	bar(g)
Pe	Equilibrium pressure	bar(g)

fxAPI_MPMS_11_2_2

The API MPMS 11.2.2 standard consists of a printed table that contains compressibility factors to correct hydrocarbon volumes under pressure to the corresponding volumes at the equilibrium pressure for the metered temperature.

The table contains compressibility factors related to meter temperature and the relative density at 60°F.

Compliance

 11.2.2 - Compressibility Factors for Hydrocarbons: 0.350 -0.637 Relative Density (60°F/60°F) and -50°F to 140°F Metering Temperature - Second Edition, October 1986

Boundaries

API MPMS 11.2.2 defines the following limits on the input values:

- 0.350 to 0.637 (relative density)
- -50 to 140 °F
- 0 to 2200 psig

Pseudo-critical temperature check

The standard specifies that the observed temperature must be less than the **pseudo-critical** temperature.

Observed Temperature [Rankin] < Pseudo Critical Temperature * 0.96

With:

Pseudo Critical Temperature [Rankin] = 621.418 - 822.686 * RD60 + 1737.86 * RD60^2

Observed Temperature [Rankin] = Observed Temperature [°F] + 459.7;

API Rounding

The actual standard is the printed table. Also included is a 'Calculation Procedure' that illustrates how to obtain the table values including all required rounding and truncating of the input, intermediate and output values.

The function provides the option to either output the table value (including all the <u>full</u> API rounding and truncating requirements) or to perform the calculation procedure without any rounding and truncating being applied.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Relative density at 60°F	Relative density at 60°F	-		00.75	0
Observed Temperature		°F		-100300	60
Observed Pressure		psig		-102500	0
Equilibrium Pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an equilibrium pressure less than atmospheric pressure (in compliance with API MPMS 12.2 par. 12.2.5.4)	psig	EQUIPRES	02500	0
API 11.2.2 rounding	0: Disabled The calculation of the compressibility factor F and CPL is performed with full precision. 1: Enabled API-MPMS 11.2.2 rounding and truncating rules are applied. The compressibility factor F is rounded to 8 decimal places with a maximum of 4 significant digits as specified in the standard. The CPL value is rounded to 4 decimal places in compliance with the standard		APIROUND	-	0
Function outputs	Remark EU	SW tag	Alarm	Fal	lback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.2 rounding'				
F	Compressibility factor	1/psi	F		0
	The output value will be either rounded or not depending input 'API 11.2.2. rounding'				
Range	With respect to the standard the input values are:	-		OOR	0
-	0: In Range				
	1: Out of Range				
	This includes the boundaries for relative density and temperature and				
	also the check of the pseudo-critical temperature.				

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

fxAPI_MPMS_11_2_2M

The API MPMS 11.2.2M standard consists of a printed table that contains compressibility factors to correct hydrocarbon volumes under pressure to the corresponding volumes at the equilibrium pressure for the metered temperature.

The table contains compressibility factors related to meter temperature and the density at 15° C.

This metric standard corresponds with API MPMS 11.2.2 (the U.S. customary version)

Compliance

 11.2.2M - Compressibility Factors for Hydrocarbons: 350 - 637 Kilograms per Cubic Meter Density (15°C) and -46°C to 60 °C Metering Temperature - First Edition, October 1986

Boundaries

API MPMS 11.2.2M defines the following limits on the input values:

- 350 to 637 kg/m3
- -46 to 60 °C
- 0 to 152 bar(g)

Also the check on the **pseudo-critical** temperature as defined for fxAPI_MPMS_11_2_2 is applied.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 15°C		kg/m3		0750	0
Observed Temperature		°C		-100150	60
Observed Pressure		bar(g)		-1200	0
Equilibrium Pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an equilibrium pressure less than atmospheric pressure (in compliance with API MPMS 12.2 par. 12.2.5.4)	bar(g)	EQUIPRES	0200	0
API 11.2.2M rounding	0: Disabled The calculation of the compressibility factor F and CPL is performed with full precision. 1: Enabled API-MPMS 11.2.2M rounding and truncating rules are applied. The compressibility factor F is rounded in accordance with the standard.		APIROUND	-	0

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.2M rounding'				
F	Compressibility factor	1/bar	F		0
	The output value will be either rounded or not depending input 'API 11.2.2M				
	rounding'				
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

fxAPI_MPMS_11_3_2_1

The function calculates the density of Ethylene (C2H4, also called Ethene) based on the API MPMS 11.3.2.1 Equation Of State in **USC units**. This API chapter is also known as API Standard 2565.

References

• Supplement to API MPMS 11.3.1.1 (API Std. 1565) Ethylene Density, 1974, Reaffirmed 1993.

Boundaries

The equation of state is valid from $65...165\ ^\circ F$ and $200\ ...\ 2100$ psia.

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Temperature		°F	-100300	0
Pressure		psia	03000	0
API rounding	0: Disabled	-		1
5	The calculations are performed with full precision. A convergence limit of 1e-10 lbm/ft3 will be applied for the iterative calculations.			
	1: Enabled			
	The calculations are performed in full compliance with the standard. The input, intermediate and			
	output values are rounded as specified and also the iteration limit as specified in the standard is			
	used to achieve convergence.			
Function outputs	Remark		EU	Fallbacl
Status	0: Normal			
	1: Input argument out of range			
	2: Calculation error			
	3: No convergence			
Donaity			lh /f+2	0

Density		lb/ft3	0
Compressibility		-	0
Equilibrium pressure	Equilibrium pressure at the observed temperature.	psia	0
	This property is not currently calculated, as it is not defined in the standard how to do this.		
Range	With respect to the standard the inputs are:	-	0
	0: In Range		
	1: Out of Range		

Calculations

The calculations are in compliance with the standard.

41

fxAPI_MPMS_11_3_3_2

The API MPMS 11.3.3.2 standard consists of a table with the density values (lbm/ft3) of propylene liquid as a function of pressure and temperature. Also part of the standard is the Calculation Procedure to obtain the table values.

Compliance

• API MPMS 11.3.3.2 Propylene Compressibility Tables, 1974, Reaffirmed 1997.

Function inputs and outputs

Boundaries

The Calculation Procedure of API MPMS 11.3.3.2 defines the following limits on the input values:

- 30 to 165 °F
- 0 to 1600 psig

Function inputs	Remark		EU	Range	Default
Name	Optional tag name, tag description and tag group				
Observed temperature			°F	0200	60
Observed pressure			psia	02000	0
API rounding	0: Disabled		-		1
	The calculations are performed with full precision.				
	A convergence limit of 1e-10 lbm/ft3 will be applied for the iterative calculations	i.			
	1: Enabled				
	The calculated density is rounded to 5 decimal places (same as table values).				
	A convergence limit of 5e-6 lbm/ft3 will be applied as defined in the standard.				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1

Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Density	At the observed pressure and temperature	lbm/ft3	DENS		0
CTPL	Volume correction factor for temperature and pressure (also referred to as the compressibility factor), equals the density at the observed conditions of pressure and temperature value divided by 32.6058 lbm/scf. The value of 32.6058 lbm/scf is specified in the Calculation Procedure of the standard as the propylene standard density at 60 °F and the corresponding vapor pressure.	-	CTPL		1
Equilibrium pressure	Equilibrium pressure at the observed temperature. Also referred to as vapor pressure or saturated pressure	psia	EQUIPRES		0
Calculation out of range	With respect to the standard the input values are: 0: In Range 1: Out of Range	-		OOR	0

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API rounding'.

fxAPI_RD60F_1980

Relative Density (T, P) <--> Relative Density (60°F, equilibrium pressure)

This function converts a relative density value at the observed temperature and pressure to the relative density at 60°F and the equilibrium pressure (typically 0 psig) or vice versa.

The temperature conversion is according to API-2540, Tables 23A/24A (Generalized Crude Oils) and 23B/24B (Refined Oil Products), while the volume correction for pressure according to API MPMS 11.2.1.

In 1982 API published tables 5D, 6D, 53D and 54D for lubricating oil products as part of API MPMS 11.1. Although tables 23D and 24D are not covered in an official API standard the Spirit^{IT} products support tables 23D and 24D as well by combining the calculation of tables 23A/B and 24A/B with the K0 and K1 constants published in the other tables for lubricating oils.

NOTE: this function is a combination of API2540 and API 11.2.1. For the calculation from observed to standard conditions an iterative calculation is required. The rounding and truncating of input and intermediate values is implemented such that the example calculations as specified in both standards are exactly reproduced.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 23A -Generalized Crude Oils, Correction of Observed Relative Density to Relative Density at 60/60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 23B -Generalized Products, Correction of Observed Relative Density to Relative Density at 60/60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 24A -Generalized Crude Oils, Correction of Volume to 60°F against Relative Density at 60/60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 24B -Generalized Products Correction of Volume to 60°F against Relative Density at 60/60°F - First Edition, August 1980
- API MPMS 11.2.1 Compressibility Factors for Hydrocarbons: 0 - 90°API Gravity Range - First Edition, August 1984

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input relative density	Depending on the conversion method this is the relative density either at the	-		01.3	0
	observed temperature and observed pressure or at 60 °F and the equilibrium				
	pressure				
Observed temperature		°F		-100400	60
Observed pressure		psig		-102000	0
Product	1: A - Crude Oil		PRDTYP	-	1
	2: B - Auto select				
	Selection based on relative density at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API-2540 rounding	0: Disabled		API2540RND	-	0
	The calculations are performed with full precision and the final CTL value is rounded				
	as specified by input 'CTL decimal places'				
	1: Enabled for computational value				
	API-2540 rounding and truncating rules are applied and, in case of conversion method				
	2 (standard to observed), the computational value for CTL as specified in Table 24 is				
	used, meaning that the CTL value has:				
	4 decimal places if CTL >=1				
	5 decimal places if CTL < 1.				
	2: Enabled for table value				
	API-2540 rounding and truncating rules are applied and, in case of conversion method				
	2 (standard to observed), the table value for CTL as specified in Table 24 meaning				
	that the CTL value has 4 decimal places in all cases				
	•				
	3: Enabled with 5 decimal places				
	API-2540 rounding and truncating rules are applied, and, in case of conversion				
	method 2 (standard to observed), the CTL value has 5 decimal places in all cases.				
	Note: although not strictly in accordance with the standard, this option is more				
	commonly used than option 'Enabled for computational value'				
	Note: for conversion type 1 'From observed to standard conditions' the CTL factor is				
	rounded to 6 decimal places when input 'API 2540 rounding' > 0, as in accordance				
	with table 23.				
Hydrometer correction	Only applies for conversion method	-	HYDROCOR		0
	'1: From observed to standard conditions'				
	0: Disabled				
	1: Enabled				

Function inputs	Remark	EU	SW tag	Range	Default
API 11.2.1 rounding	0: Disabled	-	API1121RND		0
	The calculation of the compressibility factor F is performed with full precision				
	1: Enabled				
	API-MPMS 11.2.1 rounding and truncating rules are applied. The compressibility factor				
	F is rounded to 3 decimal places as specified in the standard.				
Equilibrium pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an	psig	EQUIPRES	02000	0
	equilibrium pressure less than atmospheric pressure (in compliance with API MPMS				
	12.2 par. 12.2.5.4)				
Conversion method	1: From observed to standard conditions		CONVERSION		1
	2: From standard to observed conditions				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	1
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Output relative density	Depending on the conversion method this is the relative density either at 60 °F and the	-	RD		0
	equilibrium pressure or at the observed temperature and observed pressure				
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API2540 rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.1 rounding'				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
КО	Actual value of constant K0 used for CTL calculation	-	К0		0
К1	Actual value of constant K1 used for CTL calculation	-	K1		0
К2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor	1/°F	ALPHA		0
F	Compressibility factor	-	F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	-	PRDCUR		0
	product of table 23B/24B (enumerative value as defined for input 'Product'), else the				
	output is set equal to input 'Product'.				
CTL calc out of range	With respect to the standard used for the calculation of CTL the combination of input				0
	values is:				
	0: In Range				
	1: Out of Range			CTLOOR	
CPL calc out of range	With respect to the standard used for the calculation of CPL the combination of input				0
	values is:				
	0: In Range				
	1: Out of Range			CPLOOR	

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the relative density at standard conditions:

- 1 First the inputs are rounded in accordance with the API2540 standard, provided that API2540 rounding is enabled.
- 2 The observed density [kg/m3] is calculated from the observed relative density
- 3 The hydrometer correction on the observed density is applied, provided that this correction is enabled
- 4 At the start of the iteration the initial value for density and relative density at [60 °F, equilibrium pressure] is set to respectively the observed density and the observed relative density. The initial CPL value is set to 1.
- 5 When the type of product is set to 'B Auto select' (automatic selection of the refined product range) the K0, K1 and K2 factors are determined based on the relative density at [60 °F, equilibrium pressure]. The Transition area is only taken in consideration in the 2nd iteration loop, as specified in the standard.
- 6 The Alpha factor is calculated according from the density at [60 °C, equilibrium pressure] and the K0, K1 and K2 factor. If

API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 23.

- 7 The CTL value is calculated according to API-2540 Table 23 from the Alpha factor and the differential temperature (= observed temperature – 60°F). If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 23.
- 8 Depending on the type of API2540 rounding the calculated CTL value is rounded to 6 decimal places or not rounded at all.
- 9 The density at [60 °F, equilibrium pressure] is calculated by dividing the observed density by the new CTL value and the CPL value from the previous iteration.
- 10 The relative density at [60 °F, equilibrium pressure] is calculated from the density at [60 °F, equilibrium pressure]
- 11 Because API 11.2.1 requires the API gravity value at 60 °F, the API gravity at [60 °F, equilibrium pressure] is calculated from the density at [60 °F, equilibrium pressure].
- 12 The compressibility factor is calculated according to API MPMS 11.2.1 from the API gravity at [60 °F, equilibrium pressure] and the 'Observed temperature'. If API 11.2.1 rounding is enabled then the API gravity and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.

- 13 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 14 The density at [60°F, equilibrium pressure] is calculated by dividing the observed density by CTL and the new CPL value.
- 15 If API2540 rounding is enabled then the density at [60°F, equilibrium pressure] value is rounded to 3 decimal places as specified in the standard.
- 16 The relative density at [60 °F, equilibrium pressure] is calculated from the density at [60 °F, equilibrium pressure]
- 17 If API2540 rounding is enabled then the relative density at [60°F, equilibrium pressure] value is rounded to 4 decimal places as specified in the standard.
- 18 Steps 5 through 17 are repeated taking the density value from step 14 as the start value for the next iteration until the absolute difference between two consecutive density values is either 0.05 (or 0.07 for the transition area) or 0.000001, depending of API2540 rounding being enabled or not.
- 19 For refined products the entire iteration loop is repeated if the relative density at [60°F, equilibrium pressure] appears to be in a different product region than the observed relative density. This is required because a different product region means different K0, K1 and K2 factors.
- 20 If API 11.2.4 rounding is enabled, then the relative density value at [60°F, equilibrium pressure] is rounded to 0.0001

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the relative density at observed conditions:

- 1 First the inputs are rounded in accordance with the API2540 standard, provided that API2540 rounding is enabled.
- 2 The density at [60°F, equilibrium pressure] is calculated from the input relative density
- 3 When the type of product is set to 'B Auto select' (automatic selection of the refined product range) the K0, K1 and K2 factors are determined based on the input relative density
- 4 The Alpha factor is calculated according from the density at [60°F, equilibrium pressure] and the K0, K1 and K2 factor. If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 24.
- 5 The CTL value is calculated according to API-2540 Table 24 from the Alpha factor and the differential temperature (= observed temperature – 60°F). If API2540 rounding is enabled, then the intermediate results are rounded or truncated as specified API-2540 Table 24.
- 6 Depending on the type of API2540 rounding the calculated CTL value is rounded to 4 or 5 decimal places or not rounded at all.
- 7 Because API 11.2.1 requires the API gravity value at 60 °F, the API gravity at [60 °F, equilibrium pressure] is calculated from the density at [60 °F, equilibrium pressure].
- 8 The compressibility factor is calculated according to API MPMS 11.2.1 from the input density and temperature'. If API 11.2.1 rounding is enabled then the input density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.

- 9 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 10 The relative density at observed temperature and pressure is calculated from the input relative density and the CTL and the CPL values.

fxAPI_SG60F_1952

Specific Gravity (T, P) <--> Specific Gravity (60°F, equilibrium pressure)

This function converts a specific gravity value at the observed temperature and pressure to the specific gravity at 60°F and the equilibrium pressure (typically 0 psig) or vice versa. The temperature conversion is according to ASTM-IP Petroleum Measurements Tables 1952 (Also known as API-1952 tables) Table 24.

NOTE: this function is a combination of the API 1952 Tables and API 11.2.1. For the calculation from observed to standard conditions an iterative calculation is required. The rounding and truncating of input and intermediate values is implemented such that the example calculations as specified in both standards are exactly reproduced.

Compliance

- ASTM-IP Petroleum Measurement Tables, American Edition, United States Units of Measurement, 1952
- API MPMS 11.2.1 Compressibility Factors for Hydrocarbons: 0 - 90°API Gravity Range - First Edition, August 1984

Function inputs	Remark	EU	SW tag		Range	Default
Name	Optional tag name, tag description and tag group					
Input Specific Gravity	Depending on the conversion method this is the Specific Gravity either at the	-			01.3	0
	observed temperature and observed pressure or at 60 °F and the equilibrium pressure					
Observed temperature		°F			-100400	60
Observed pressure		psig			-102000	0
API 11.2.1 rounding	0: Disabled	-	API1121F	RND		0
_	The calculation of the compressibility factor F is performed with full precision					
	1: Enabled					
	API-MPMS 11.2.1 rounding and truncating rules are applied. The compressibility factor					
	F is rounded to 3 decimal places as specified in the standard.					
Equilibrium pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an	psig	EQUIPR	ES	02000	0
	equilibrium pressure less than atmospheric pressure (in compliance with API MPMS					
	12.2 par. 12.2.5.4).					
Conversion method	1: From observed to standard conditions		CONVER	SION		1
	2: From standard to observed conditions					
Function outputs	Remark	E	U SW	tag	Alarm	Fallback
Status	0: Normal	-	STS			
	1: Input argument out of range				FIOOR	1
	2: Calculation error				CALCERR	
	3: No convergence				NOCONV	
Output Specific Gravity	Depending on the conversion method this is the Specific Gravity either at 60 °F and the	-	RD			0
	equilibrium pressure or at the observed temperature and observed pressure					
CTL						
	Volume correction factor for temperature.	-	CTL			1
CPL	· · ·	-	CTL CPL			1
CPL	Volume correction factor for temperature.	-	-			
CPL CTPL	Volume correction factor for temperature. Volume correction factor for pressure	-	-			
	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding'	-	CPL			1
	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor		CPL			1
CTPL F	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL	-	CPL			1
CTPL F	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL Compressibility factor	-	CPL			1 1 0
CTPL F	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL Compressibility factor With respect to the standard used for the calculation of CTL the combination of input	- - -	CPL			1 1 0
CTPL F	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL Compressibility factor With respect to the standard used for the calculation of CTL the combination of input values is:		CPL		CTLOOR	1 1 0
CTPL F CTL calc out of range	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL Compressibility factor With respect to the standard used for the calculation of CTL the combination of input values is: 0: In Range		CPL		CTLOOR	1 1 0
CTPL F	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL Compressibility factor With respect to the standard used for the calculation of CTL the combination of input values is: 0: In Range 1: Out of Range	-	CPL		CTLOOR	1 1 0 0
CTPL F CTL calc out of range	Volume correction factor for temperature. Volume correction factor for pressure Value will be rounded according to input 'API 11.2.1 rounding' Combined volume correction factor CTPL = CTL * CPL Compressibility factor With respect to the standard used for the calculation of CTL the combination of input values is: 0: In Range 1: Out of Range With respect to the standard used for the calculation of CPL the combination of input		CPL		CTLOOR	1 1 0 0

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the Specific Gravity at standard conditions:

- 1 At the start of the iteration the initial value for Specific Gravity at [60 °F, equilibrium pressure] is set to the Observed Specific Gravity. The initial CPL value is set to 1.
- 2 The CTL value is determined from the Specific Gravity at [60 °F, equilibrium pressure] according to API 1952 Table 24.
- 3 The Specific Gravity at [60 °F, equilibrium pressure] is calculated from the Observed specific gravity, the new CTL value and the CPL value from the previous iteration.

- 4 Because API 11.2.1 requires the API gravity value at 60 °F, the API gravity at [60 °F, equilibrium pressure] is calculated from the Specific gravity at [60 °F, equilibrium pressure].
- 5 The compressibility factor is calculated according to API MPMS 11.2.1 from the API gravity at [60 °F, equilibrium pressure] and the 'Observed temperature'. If API 11.2.1 rounding is enabled then the API gravity and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 6 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 7 The Specific Gravity at [60°F, equilibrium pressure] is calculated by dividing the Observed Specific Gravity by the CTL and the new CPL value.
- 8 Steps 2 through 7 are repeated taking the specific gravity value from step 7 as the start value for the next iteration until the absolute difference between two consecutive specific gravity values is 0.0001.

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the Specific Gravity at observed conditions:

- 1 The CTL value is calculated according to API 1952 Table 24
- 2 Because API 11.2.1 requires the API gravity value at 60 °F, the API gravity is calculated from the 'Input Specific Gravity'.
- 3 The compressibility factor is calculated according to API MPMS 11.2.1 from the API gravity and the 'Observed temperature'. If API 11.2.1 rounding is enabled then the input density and temperature are rounded and the calculations are performed in accordance with the rounding and truncating rules of the standard.
- 4 The CPL value is calculated from the compressibility factor and the 'Observed pressure' and 'Equilibrium pressure' input values.
- 5 The output Specific Gravity (at observed temperature and pressure) is calculated from the input Specific Gravity and the CTL and the CPL values.

fxAPI_RD60F_NGL_LPG

Relative Density (T, P) <--> Relative Density (60°F, Pe)

This function converts the relative density value at the observed temperature and pressure to the relative density value at 60°F and the equilibrium pressure or vice versa.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-25 / GPA TP-27), while the pressure correction is according to API MPMS 11.2.2:1984.

The calculation of the equilibrium pressure is according to GPA TP-15 (API MPMS 11.2.2 Addendum:1994).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-25: Temperature Correction for the volume of Light Hydrocarbons – Tables 24E and 23E, 1998
- API MPMS 11.2.2 Compressibility Factors for Hydrocarbons: 0.350 - 0.637 Relative Density (60°F/60°F) and -50°F to 140°F Metering Temperature - Second Edition, October 1986
- API MPMS 11.2.5: A Simplified Vapor Pressure Correlation for Commercial NGLs, September 2007
- GPA TP-15: A Simplified Vapor Pressure Correlation for Commercial NGLs, September 2007 (also covers GPA TP-15 1988)
- API MPMS 11.2.2 Addendum : Compressibility Factors for Hydrocarbons: Correlation of Vapor Pressure for Commercial Natural Gas Liquids (same as GPA TP-15:1988)

Function inputs

Name	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input relative density	Depending on the conversion method this represents the relative density either at the observed temperature and pressure or at 60 °F and the equilibrium pressure	-		00.75	0
Observed temperature	Temperature at which the relative density is observed	°F		-100300	60
Observed pressure	Pressure at which the relative density is observed	psia		-102500	0
API 11.2.4 rounding	0: Disabled The calculations are performed with full precision and the output values are not rounded 1: Enabled The input and output values are rounded as defined in the standard		API1124RND		0
API 11.2.2 rounding	0: Disabled The calculations are performed with full precision and the output values are not rounded 1: Enabled The input and output values are rounded as defined in the standard		API1122RND		0
Equilibrium pressure mode	1: Use Input The value of input 'Equilibrium pressure value' is used for the calculation of CPL 2: GPA TP-15 The equilibrium pressure is calculated in accordance with GPA TP-15		EQUIPMODE		2
Equilibrium pressure value	Only used when input 'Equilibrium pressure mode' is set to 'Use input'. The value will be used for the calculation of the CPL	psia	EQUIPINP		0
GPA TP-15 rounding	0: Disabled Full precision (no rounding and truncating applied) 1: Enabled Rounding as defined in ' GPA TP15:1988 / API MPMS 11.2.2 Addendum':1994	-	TP15RND		0
P100 Correlation	O: Disabled The standard correlation is commonly used for pure products such as propane, butane and natural gasoline. It only requires the relative density and the temperature to calculate the vapor pressure 1: Enabled The improved correlation requires the vapor pressure at 100°F (37.8 °C). This method is better suited for varied NGL mixes Where different product mixes could have the same specific gravity but different equilibrium pressures.	-	P100CORR		0
Vapor pressure at 100°F		psia	EQUIP100F	02500	0
Conversion method	1: From observed to standard conditions 2: From standard to observed conditions		CONVMETH		1

Function outputs

Name	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	

Name	Remark	EU	SW tag	Alarm	Fallback
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Output relative density	Depending on the conversion method this represents the relative density	-	DENS		Input Input
	either at 60 °F and the equilibrium pressure or at the observed				relative density
	temperature and pressure				
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API 11.2.4 rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.2. rounding'				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
F	Compressibility factor	1/psi	F		0
	The output value will be either rounded or not depending input 'API				
	rounding'				
Equilibrium pressure	The equilibrium pressure calculated by GPA TP-15	psia	EQUIPCUR		0
	Will be set to 0 when equilibrium pressure is below atmospheric pressure				
CTL calc out of range	With respect to the API 11.2.4 standard the combination of input values is:				0
	0: In Range				
	1: Out of Range				
	The following range checks apply:			CTLOOR	
	0.21 <= RD <= 0.74				
	-50.8 <= T <= 199.4 °F				
	Table 23E reference fluid ranges				
CPL calc out of range	With respect to API 11.2.2M the combination of input values is:				0
	0: In Range				
	1: Out of Range			CPLOOR	
	The following range checks apply:				
	350 <= Density 15 °C <= 637 kg/m3				
	-46 °C <= T <= 60 °C				
	Also the check on the pseudo-critical temperature as defined for				
	fxAPI_MPMS_11_2_2 is applied.				
GPA TP-15 out of range	Only set when the GPA TP-15 calculation is enabled	-			0
	With respect to the GPA TP-15 standard the combination of input values is:				
	0: In Range				
	1: Out of Range				
	The following range checks apply:			TP15OOR	
	For lower range:				
	0.350 <= RD60 < 0.425				
	-50 to (695.51*RD60 - 155.51) °F				
	Higher range:				
	0.425 <= RD60 <= 0.676				
	-50 to 140 °F				
	with RD60 being the relative density at 60°F				

Calculations

The calculations depend on the conversion method.

Conversion method 1: from observed to standard conditions. The function performs the following iterative algorithm to calculate the relative density at 60 °F and the equilibrium pressure.

- 1 When API 11.2.4 rounding is enabled, the input relative density and temperature values are rounded in accordance with the standard
- 2 At the start of the iteration the relative density at [60 °F, equilibrium pressure] is set equal to the observed relative density and the CPL value is set to 1.
- 3 First the relative density corrected for pressure is calculated by dividing the observed relative density by the CPL value.
- 4 The CTL value and the relative density at [60 °F, equilibrium pressure] is calculated from the relative density corrected for pressure and the observed temperature according to Table 23E
- 5 Depending on the value of input 'Equilibrium pressure mode', either value of input 'Equilibrium pressure value' is used or the equilibrium pressure (vapor pressure) is calculated according to GPA TP-15. Whether the GPA TP-15 rounding and truncation rules are applied is dictated by input 'GPA-TP15 rounding'

- 6 The compressibility factor F is calculated according to API MPMS 11.2.2 from the relative density at [60 °F, equilibrium pressure] and the 'Observed temperature', with, depending on input API 11.2.2, rounding and truncation according to the standard.
- 7 The CPL value is calculated from the compressibility factor, the equilibrium pressure and the 'Observed pressure' input value.
- 8 The new value for relative density at [60°F, equilibrium pressure] is calculated by dividing the observed density by the CTL and CPL values.
- 9 Steps 3 though 8 are repeated taking the density value from step 8 as the staring value until the absolute difference between two consecutive density values is less than the convergence limit.

To avoid convergence problems different convergence limits are applied, depending on the whether API 11.2.2 and/or GPA TP-15 rounding is applied:

If API 11.2.2M rounding is enabled -> Limit = 0.00005 kg/m3 else if GPA TP-15 rounding is enabled-> Limit = 0.000005 kg/m3

else -> Limit = 0.00000001 kg/m3

10 If API 11.2.4 rounding is enabled, then the relative density at [60°F, equilibrium pressure] is rounded to 0.0001

Conversion method 2: from standard to observed conditions. The function performs straightforward calculations to determine the density at observed conditions:

- 1 When API 11.2.4 rounding is enabled, the input relative density and temperature values are rounded in accordance with the standard
- 2 The CTL value is calculated according to API MPMS 11.2.4 (GPA TP-27) Table 24E from the density at [15 °C, equilibrium pressure] and the 'Observed temperature'.
- 3 Depending on the value of input 'Equilibrium pressure mode', either value of input 'Equilibrium pressure value' is used or the equilibrium pressure (vapor pressure) is calculated according to GPA TP-15.
- 4 The compressibility factor is calculated according to API MPMS 11.2.2 from the input relative density and the 'Observed temperature'.
- 5 The CPL value is calculated from the compressibility factor, the equilibrium pressure and the 'Observed pressure' input value.
- 6 If API 11.2.4 rounding is enabled, then the CTL value is rounded at [60°F, equilibrium pressure] is rounded to 0.00001
- 7 The relative density at the observed conditions is calculated by multiplying the input relative density by the CTL value and the CPL value.

fxAPI_Table5_1952

°API (T) --> °API (60°F)

Compliance

• ASTM-IP Petroleum Measurement Tables, American Edition, United States Units of Measurement, 1952

This function converts an API gravity value at the observed temperature to the API gravity value at 60°F in accordance with API 1952 Table 5.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed API	Observed API gravity	°API		-20120	0
Observed temperature	Temperature at which the API gravity is observed	۴		-100400	60
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
API at 60 °F	API gravity at 60°F	°API	API		0
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The table values are the standard, so no calculations are involved. The function performs an interpolation between the

table values that correspond to the input values.

fxAPI_Table5_1980

°API (T) --> °API (60°F)

This function converts an API gravity value at the observed temperature to the API gravity value at 60°F.

The temperature conversion is according to API MPMS 11.1:1980 (API-2540), Tables 5A (Generalized Crude Oils) and 5B (Refined Oil Products) and API MPMS 11.1 Chapter XIII Table 5D: 1984 (Lubricating Oils).

The function provides the option to correct for readings taken from a hydrometer as specified in the API-2540 standard.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 5A -Generalized Crude Oils, Correction of Observed API Gravity to API Gravity at 60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 5B -Generalized Products, Correction of Observed API Gravity to API Gravity at 60°F- First Edition, August 1980
- API MPMS 11.1 Volume XIII Table 5D Generalized Lubricating Oils, Correction of Observed API Gravity to API Gravity at 60°F
 - January 1982

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed API	Observed API gravity	°API		-20120	0
Observed temperature	Temperature at which the API gravity is observed	°F		-100400	60
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on °API at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API2540 rounding	0: Disabled		APIROUND		0
	The calculations are performed with full precision.				
	A convergence limit of 0.000001 kg/m3 will be applied for the iterative				
	calculations.				
	1: Enabled				
	API-2540 rounding and truncating rules are applied.				
	A convergence limit of 0.05 kg/m3 will be applied as defined in the standard.				
Hydrometer correction	0: Disabled		HYDROCOR		0
	1: Enabled				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
API at 60 °F	API gravity at 60°F	°API	API		0
CTL	Volume correction factor for temperature.	-	CTL		1
ко	Actual value of constant K0 used for CTL calculation	-	К0		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
K2	Actual value of constant K2 used for CTL calculation	-	К2		0
Alpha	Thermal expansion factor	1/°F	ALPHA		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected product	-	PRDCUR		0
	of table 5B (enumerative value as defined for input 'Product'), else the output is set equal to				
	input 'Product'.				
Calculation out of	With respect to the standard the input values are:	-		OOR	0
range	0: In Range				
	1: Out of Range				

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API 2540 rounding'.

fxAPI_Table5_2004

°API (T, P) --> °API (60°F, 0 psig)

This function converts an API gravity value at the observed temperature and pressure to the API gravity value at 60°F and 0 psig.

The temperature and pressure correction is according to API MPMS 11.1:2004.

An iterative calculation needs to be applied to convert the observed API gravity to the value at base conditions.

NOTE: As opposed to API-2540, the 2004 standard does not include a correction for readings taken from a hydrometer and assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed API	Observed API gravity	°API		-20180	0
Observed temperature	Temperature at which the API gravity is observed	°F		-100400	60
Observed pressure	Pressure at which the API gravity is observed	psig		-102000	0
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select (Selection based on °API at 60 °F)				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API rounding	0: Disabled		APIROUN		0
	The calculations are performed with full precision and the final CTL, CPL and CTPL values		D		
	are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal places'				
	1: Enabled				
	The input and output values are rounded in compliance with the standard. The CTL, CPL				
	and CTPL value are rounded to 5 decimal places				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence within 15 iterations			NOCONV	
API at 60 °F	API gravity at 60°F and 0 psig	-	API		0
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API rounding'				
CTPL	Combined volume correction factor, CTPL = CTL * CPL	-	CTPL		1
КО	Actual value of constant K0 used for CTL calculation	-	К0		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
К2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor	1/°C	ALPHA		0
F	Compressibility factor	1/psi	F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	-	PRDCUR		0
	product of table B (enumerative value as defined for input 'Product'), else the output is set				
	equal to input 'Product'.				
Calculation out of	With respect to the standard the input values are:	-		OOR	0
range	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table6_1952

°API (60°F, 0 psig) --> CTL

This function calculates the volume correction factor for temperature from the API gravity value at 60°F and the observed temperature according to API 1952 Table 6.

Compliance

• ASTM-IP Petroleum Measurement Tables, American Edition, United States Units of Measurement, 1952

Boundaries

Table 6 contains values for the following range:

Input value	Normal Range	EU
API Gravity at 60 °F	0100	°API
Observed temperature	0300	°F

Note that the table does not cover the full range, e.g. for an API gravity of 70 the table only specifies values between 0 .. 150 $^\circ F.$

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
API at 60 °F	API gravity at 60°F and the equilibrium pressure	°API		-20120	0
Observed temperature		°F		-100400	60
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
CTL	Volume correction factor for temperature.	-	CTL		1
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The table values are the standard, so no calculations are involved. The function performs an interpolation between the table values that correspond to the input values.

fxAPI_Table6_1980

°API (60°F, 0 psig) --> CTL

This function calculates the volume correction factor for temperature from the API gravity value at 60°F and the observed temperature.

The temperature conversion is according to API-2540, Tables 6A (Generalized Crude Oils) and 6B (Refined Oil Products) and API MPMS 11.1 Chapter XIII Table 6D: 1984 (Lubricating Oils).

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 6A -Generalized Crude Oils, Correction of Volume to 60°F against API Gravity at 60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 6B -Generalized Products, Correction of Volume to 60°F against API Gravity at 60°F - First Edition, August 1980
- API MPMS 11.1 Volume XIII Table 6D Generalized Lubricating Oils, Correction of Volume to 60°F Against API Gravity at 60°F
 - January 1982

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
API at 60 °F	API gravity at 60°F and the equilibrium pressure	°API		-20120	0
Observed temperature		°F		-100400	60
Product	1: A - Crude Oil		PRDTYP	-	1
	2: B - Auto select (Selection based on °API at 60 °F)				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API2540 rounding	0: Disabled		APIROUND	-	0
5	The calculations are performed with full precision and the final CTL value is rounded as				
	specified by input 'CTL decimal places'				
	1: Enabled for computational value				
	API-2540 rounding and truncating rules are applied and the computational value for CTI	-			
	as specified in the standard is used, meaning that the CTL value has:				
	4 decimal places if CTL >=1				
	5 decimal places if CTL < 1.				
	2: Enabled for table value				
	API-2540 rounding and truncating rules are applied and the table value for CTL as				
	specified in the standard meaning that the CTL value has 4 decimal places in all cases				
	3: Enabled with 5 decimal places				
	API-2540 rounding and truncating rules are applied, while the CTL value has 5 decimal				
	places in all cases.				
	Note: although not strictly in accordance with the standard, this option is more				
	commonly used than option 'Enabled for computational value'				
	 there is a brancher of the second seco				
Function outputs	Remark EU	SV	V tag 💋	Alarm F	allback
Status	0: Normal -	ST	-	1	
	1: Input argument out of range		F	IOOR	
			-		

Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API2540 rounding'				
К0	Actual value of constant K0 used for CTL calculation	-	К0		0
К1	Actual value of constant K1 used for CTL calculation	-	K1		0
К2	Actual value of constant K2 used for CTL calculation	-	К2		0
Alpha	Thermal expansion factor	1/°F	ALPHA		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected product of table 6B (enumerative value as defined for input 'Product'), else the output is set equal to input 'Product'.	-	PRDCUR		0
Calculation out of	With respect to the standard the input values are:	-		OOR	0
range	0: In Range				
	1: Out of Range				

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API 2540 rounding'.

fxAPI_Table6_2004

°API (60°F, 0 psig) --> °API (T, P)

This function converts an API gravity value at 60°F and 0 psig to the API gravity value at the observed temperature and pressure. The temperature and pressure correction is according to API MPMS 11.1:2004. **NOTE:** As opposed to API-2540 that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
API at 60 °F	API gravity at 60°F and 0 psig	°API		-20120	0
Observed temperature	Temperature at which the API gravity is observed	°F		-100400	60
Observed pressure	Pressure at which the API gravity is observed	psig		-102000	0
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on °API at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API rounding	0: Disabled		APIROUND		0
	The calculations are performed with full precision				
	1: Enabled				
	The input and output values are rounded in compliance with the standard.				
	The CTL, CPL and CTPL value are rounded to 5 decimal places.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
Observed API	API gravity at the observed temperature and pressure	-	API		0
CTL	Volume correction factor for temperature.	-	CTL		1
CPL	Volume correction factor for pressure	-	CPL		1
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
ко	Actual value of constant K0 used for CTL calculation	-	K0		0
К1	Actual value of constant K1 used for CTL calculation	-	K1		0
К2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor	1/°F	ALPHA		0
F	Compressibility factor	1/psi	F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	-	PRDCUR		0
	product of table B (enumerative value as defined for input 'Product'), else the output				
	is set equal to input 'Product'.				
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table23_1952

Specific Gravity (T) --> Specific Gravity (60°F)

This function converts a specific gravity value at the observed temperature to the specific gravity at 60° according to the API 1952 Table 23.

Compliance

• ASTM-IP Petroleum Measurement Tables, American Edition, United States Units of Measurement, 1952

Boundaries

Table 23 contains values for the following range:

Input value	Normal Range	EU
Observed specific gravity	0.420 1.099	
Observed temperature	0150	°F

Note that the table does not cover the full range, e.g. for an Observed specific gravity of 0.420 the table only specifies values between 120 .. 140 $^{\circ}{\rm F}$

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed specific gravity	Specific gravity at the observed temperature.	-		01.3	0
Observed temperature		°F		-100400	60
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
Specific gravity 60 °F	Specific gravity at 60°F	-	RD		0
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The table values are the standard, so no calculations are involved. The function performs an interpolation between the table values that correspond to the input specific gravity and input temperature.

In case the combination of input values ('Observed specific gravity' and Observed temperature') is not covered by the table, the output 'Specific gravity at 60 °F' is set to 0 and output 'Calculation out of range' is set to 1.

fxAPI_Table23_1980

Relative Density (T) --> Relative Density (60°F)

This function converts a relative density value at the observed temperature to the relative density at 60°.

The temperature conversion is according to API-2540, Tables 23A (Generalized Crude Oils) and 23B (Refined Oil Products. In 1982 API published tables 5D, 6D, 53D and 54D for lubricating oil products as part of API MPMS 11.1. Although tables 23d and 24d are not covered in an official API standard the Spirit ^{IT} productssupport tables 23D and 24D as well by combining the calculation of tables 23A/B and 24A/B with the K0 and K1 constants published in the other tables for lubricating oils. An iterative calculation needs to be applied to convert the observed relative density to the value at base conditions. The function provides the option to correct for readings taken from a hydrometer as specified in the API-2540 standard.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 23A -Generalized Crude Oils, Correction of Observed Relative Density to Relative Density at 60/60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 23B -Generalized Products, Correction of Observed Relative Density to Relative Density at 60/60°F - First Edition, August 1980

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed relative density	Relative density at observed temperature and pressure	-		01.3	0
Observed temperature		°F		-100400	60
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on relative density at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API2540 rounding	0: Disabled		APIROUND		0
	The calculations are performed with full precision.				
	A convergence limit of 0.000001 kg/m3 will be applied for the iterative calculations.				
	1: Enabled				
	API-2540 rounding and truncating rules are applied.				
	A convergence limit of 0.05 kg/m3 will be applied as defined in the standard.				
Hydrometer correction	0: Disabled		HYDROCOR		0
	1: Enabled				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
		-	515		
	1: Input argument out of range	-	515	FIOOR	
		-	515	FIOOR CALC	
	1: Input argument out of range	-	515		
Relative density 60 °F	1: Input argument out of range 2: Calculation error 3: No convergence	-	RD	CALC	0
Relative density 60 °F CTL	1: Input argument out of range 2: Calculation error			CALC	0
Relative density 60 °F CTL K0	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure	-	RD	CALC	-
CTL	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature.	-	RD CTL	CALC	1
CTL KO	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation	-	RD CTL KO	CALC	1 0
CTL K0 K1	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation Actual value of constant K1 used for CTL calculation	- - - -	RD CTL K0 K1	CALC	1 0 0
CTL K0 K1 K2	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation Actual value of constant K1 used for CTL calculation Actual value of constant K2 used for CTL calculation Thermal expansion factor	-	RD CTL K0 K1 K2 ALPHA	CALC	1 0 0 0
CTL KO K1 K2 Alpha	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation Actual value of constant K1 used for CTL calculation Actual value of constant K2 used for CTL calculation Thermal expansion factor When input 'Product' is 'B - Auto select', then the output is set to the actual selected	- - - - - 1/°F	RD CTL K0 K1 K2	CALC	1 0 0 0 0
CTL K0 K1 K2 Alpha	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation Actual value of constant K1 used for CTL calculation Actual value of constant K2 used for CTL calculation Thermal expansion factor	- - - - - 1/°F	RD CTL K0 K1 K2 ALPHA	CALC	1 0 0 0 0
CTL K0 K1 K2 Alpha Product	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation Actual value of constant K1 used for CTL calculation Actual value of constant K2 used for CTL calculation Thermal expansion factor When input 'Product' is 'B - Auto select', then the output is set to the actual selected product of table 23B (enumerative value as defined for input 'Product'), else the output is set equal to input 'Product'.	- - - - - 1/°F	RD CTL K0 K1 K2 ALPHA	CALC NOCONV	1 0 0 0 0 0
CTL KO K1 K2 Alpha	1: Input argument out of range 2: Calculation error 3: No convergence Relative density at 60°F and the equilibrium pressure Volume correction factor for temperature. Actual value of constant K0 used for CTL calculation Actual value of constant K1 used for CTL calculation Actual value of constant K2 used for CTL calculation Thermal expansion factor When input 'Product' is 'B - Auto select', then the output is set to the actual selected product of table 23B (enumerative value as defined for input 'Product'), else the output	- - - - - 1/°F	RD CTL K0 K1 K2 ALPHA	CALC	1 0 0 0 0

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API 2540 rounding'.

fxAPI_Table23_2004

Relative Density (T, P) --> Relative Density (60°F, 0 psig)

This function converts a relative density value at the observed temperature and pressure to the relative density value at 60° F and 0 psig.

NOTE: As opposed to API-2540, the 2004 standard does not include a correction for readings taken from a hydrometer and assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

K2

0

The temperature and pressure correction is according to API

MPMS 11.1:2004. An iterative calculation needs to be applied to convert the observed relative density to the value at base conditions.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed Relative density	Relative density at the observed temperature and pressure	-		01.3	0
Observed temperature	Temperature at which the relative density is observed	°F		-10040	0 60
Observed pressure	Pressure at which the relative density is observed	psi	g	-10200	0 0
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on relative density at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API rounding	0: Disabled		APIROUN	D	0
	The calculations are performed with full precision and the final CTL, CPL and CTPL				
	values are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal places'				
	1: Enabled				
	The input and output values are rounded in compliance with the standard. The CTL	, CPL			
	and CTPL value are rounded to 5 decimal places.				
	·				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	y		1
	1: Input argument out of range				
	Outputs will be set to fallback values				
	2: Calculation error				
	Outputs will be set to fallback values				
	3: No convergence within 15 iterations				
	Outputs will be set to values of last iteration				
Relative density at 60 °F	Relative density at 60°F and 0 psig	-	RD		0
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API rounding'				-
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API rounding'				-
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL		511 6		-
КО	Actual value of constant K0 used for CTL calculation	-	К0		0
K0 K1	Actual value of constant K1 used for CTL calculation	_	K0 K1		0
177			1/1		v

Alpha	Thermal expansion factor	1/°F	ALPHA	
F	Compressibility factor	1/psi	F	
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	-	PRDCUR	
	product of table B (enumerative value as defined for input 'Product'), else the output			
	is set equal to input 'Product'.			
Calculation out of range	With respect to the standard the input values are:	-		OOR
	0: In Range			
	1: Out of Range			

Actual value of constant K2 used for CTL calculation

Calculations

K2

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table23E

Relative Density (T) --> Relative Density (60°F)

This function converts the relative density value at the observed temperature to the corresponding relative density at 60°F. The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-25 / GPA TP-27).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-25: Temperature Correction for the volume of Light Hydrocarbons – Tables 24E and 23E, 1998

Function inputs	Remark		EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group					
Observed relative density	Relative density at the observed temperature		-		00.75	0
Observed temperature	Temperature at which the relative density is observed		°F		-100300	60
API rounding	0: Disabled			APIROUND		0
	The calculations are performed with full precision and not rounded	the output values are				
	1: Enabled					
	The input and output values are rounded as defined in	the standard				
Function outputs	Remark	EU	SW tag		Alarm	Fallback
Status	0: Normal	-	STS			1
	1: Input argument out of range			I	FIOOR	
	2: Calculation error			(CALCERR	
	3: No convergence			1	NOCONV	
Relative density at 60 °F	Relative density at 60°F		RD			0
CTL	Volume correction factor for temperature.	-	CTL			1
Calculation out of range	With respect to the standard the input values are:	-		(OOR	0
5	0: In Range					

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

1: Out of Range

fxAPI_Table24_1952

Specific Gravity (60°F) --> CTL

This function returns the volume correction factor for temperature Ctl from the observed temperature and the specific gravity at 60° according to the API 1952 Table 24.

Compliance

• ASTM-IP Petroleum Measurement Tables, American Edition, United States Units of Measurement, 1952

Boundaries

Table 23 contains values for the following range:

Input value	Normal Range	EU	
Observed specific gravity	0.500 1.100		
Observed temperature	-50 +300	°F	

Note that the table does not cover the full range, e.g. for an Specific gravity at 60 °F of 0.500 the table only specifies values between -50 .. 95 °F

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Specific gravity 60 °F	Specific gravity at 60°F	-		01.3	0
Observed temperature		°F		-100400	60

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
CTL	Volume correction factor for temperature.	-	CTL		1
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				
	1: Out of Range				

Calculations

The table values are the standard, so no calculations are involved. The function performs an interpolation between the table values that correspond to the input specific gravity and input temperature.

In case the combination of input values ('Specific gravity 60 $^{\circ}$ F' and Observed temperature') is not covered by the table, the output 'CTL' is set to 1 and output 'Calculation out of range' is set to 1.

fxAPI_Table24_1980

Relative Density (60°F) --> CTL

This function calculates the volume correction factor for temperature CTL from the relative density value at 60°F and the observed temperature.

The temperature conversion is according to API-2540, Tables 24A (Generalized Crude Oils) and 24B (Refined Oil Products. In 1982 API published tables 5D, 6D, 53D and 54D for lubricating oil products as part of API MPMS 11.1. Although tables 23d and 24d are not covered in an official API standard the Spirit^{IT} products support tables 23D and 24D as well by combining the calculation of tables 23A/B and 24A/B with the K0 and K1 constants published in the other tables for lubricating oils.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 24A -Generalized Crude Oils, Correction of Volume to 60°F against Relative Density at 60/60°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 24B -Generalized Products, Correction of Volume to 60°F against Relative Density at 60/60°F - First Edition, August 1980

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Relative Density at 60 °F	Relative density at 60°F and the equilibrium pressure	-		01.3	0
Observed temperature		°F		-100400	60
Product	1: A - Crude Oil		PRDTYP	-	1
	2: B - Auto select				
	Selection based on relative density at 60 °F				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API2540 rounding	0: Disabled		APIROUND	-	0
	The calculations are performed with full precision and the final CTL value is rounded				
	as specified by input 'CTL decimal places'				
	1: Enabled for computational value				
	API-2540 rounding and truncating rules are applied and the computational value for				
	CTL as specified in the standard is used, meaning that the CTL value has:				
	4 decimal places if CTL >=1				
	5 decimal places if CTL < 1.				
	2: Enabled for table value				
	API-2540 rounding and truncating rules are applied and the table value for CTL as				
	specified in the standard meaning that the CTL value has 4 decimal places in all cases				
	3: Enabled with 5 decimal places				
	API-2540 rounding and truncating rules are applied, while the CTL value has 5 decimal				
	places in all cases.				
	Note: although not strictly in accordance with the standard, this option is more				
	commonly used than option 'Enabled for computational value'				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API2540 rounding'				
ко	Actual value of constant K0 used for CTL calculation	-	К0		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
K2	Actual value of constant K2 used for CTL calculation	-	К2		0
Alpha	Thermal expansion factor	1/°F	ALPHA		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected product	-	PRDCUR		Input
	of table 24B (enumerative value as defined for input 'Product'), else the output is set equal to				Product
	input 'Product'.				
Calculation out of	With respect to the standard the input values are:	-		OOR	0
range	0: In Range				
-	1: Out of Range				

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API 2540 rounding'.

fxAPI_Table24_2004

Relative Density (60°F, 0 psig) --> Relative Density (T, P)

This function converts a relative density value at 60°F and 0 psig to the relative density value at the observed temperature and pressure.

The temperature and pressure correction is according to API MPMS 11.1:2004.

NOTE: The 2004 standard assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Function inputs	Remark		EU	SW tag	Range	Defaul
Name	Optional tag name, tag description and tag group					
Relative density at 60 °F	Relative density at 60°F and 0 psig		-		01.3	0
Observed temperature	Temperature at which the API gravity is observed		°F		-100400	60
Observed pressure	Pressure at which the API gravity is observed		psig		-102000	0
Product	1: A - Crude Oil			PRDTYP		1
	2: B - Auto select					
	Selection based on relative density at 60 °F					
	3: B - Gasoline					
	4: B - Transition Area					
	5: B - Jet Fuels					
	6: B - Fuel Oil					
	7: D - Lubricating Oil					
API rounding	0: Disabled			APIROUND		0
	The calculations are performed with full precision and the final CTL, CPL and G	CTPL				
	values are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal place	s'				
	1: Enabled					
	The input and output values are rounded in compliance with the standard. The	e CTL, CPL				
	and CTPL value are rounded to 5 decimal places.					
Function outputs	Remark	EU	SW tag	Alarm	Fa	allback
Status	0: Normal	-	STS			
	1: Input argument out of range			FIOOI	ર	
	2: Calculation error			CALC	ERR	
Observed relative density	Relative density at the observed temperature and pressure	-	RD		0	
CTL	Volume correction factor for temperature.	-	CTL		1	
	Value will be rounded according to input 'API rounding'					
CPL	Volume correction factor for pressure	-	CPL		1	
	Value will be rounded according to input 'API rounding'					
CTPL	Combined volume correction factor	-	CTPL		1	
	CTPL = CTL * CPL					
<0	Actual value of constant K0 used for CTL calculation	-	К0		0	
<1	Actual value of constant K1 used for CTL calculation	-	K1		0	
K2	Actual value of constant K2 used for CTL calculation	-	K2		0	
Alpha	Thermal expansion factor	1/°F	ALPHA		0	
:	Compressibility factor	1/psi	F		0	
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual	· 1	PRDCUI	R	0	
	selected product of table B (enumerative value as defined for input				-	
	'Product'), else the output is set equal to input 'Product'.					
Calculation and after		-		OOR	0	
Calculation out of range	With respect to the standard the input values are:					
Calculation out of range	With respect to the standard the input values are: 0: In Range	-		OOK	0	

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table24E

Relative Density (60°F) --> CTL

This function calculates the volume correction factor for temperature from the relative density value at 60°F and the observed temperature.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-25 / GPA TP-27).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-25: Temperature Correction for the volume of Light Hydrocarbons – Tables 24E and 23E, 1998

APIROUND	00.75 -100300	0 60
APIROUND		-
APIROUND	-100300	60
APIROUND		
		0
1 + > ~		Fallback
	Aldrin	FailDack
5		
	FIOOR	
	CALC	
L		1
	OOR	0
	<mark>/ tag</mark> S	S FIOOR CALC

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

1: Out of Range

fxAPI_Table53_1952

Density (T) --> Density (15°C)

This function converts a density value at the observed temperature to the density at 15°C according to the API 1952 Table 53.

Compliance

• ASTM-IP Petroleum Measurement Tables, Metric Edition, Metric Units of Measurement, 1952

Boundaries

Table 53 contains values for the following range:

Input value	Normal Range	EU
Observed density	420 1099	kg/m3
Observed temperature	-25 125	°C

Note that the table does not cover the full range, e.g. for an Observed specific gravity of 0.420 the table only specifies values between 45 .. 60 $^\circ C$

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed density	Density at the observed temperature.	kg/m3		01300	0
Observed temperature		°C		-100200	15
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
Density at 15 °C	Density at 15 °C	kg/m3	DENS15		0
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				

Calculations

The table values are the standard, so no calculations are involved. The function performs an interpolation between the table values that correspond to the input specific gravity and input temperature.

1: Out of Range

In case the combination of input values ('Observed density' and Observed temperature') is not covered by the table, the output 'Density at 15 °C' is set to 0 and output 'Calculation out of range' is set to 1.

fxAPI_Table53_1980

Density (T) --> Density (15°C)

This function converts a density value at the observed temperature to the density value at 15°C.

The temperature conversion is according to API-2540, Tables 53A (Generalized Crude Oils) and 53B (Refined Oil Products) and API MPMS 11.1 Chapter XIV Table 53D: 1984 (Lubricating Oils). The function provides the option to correct for readings taken from a hydrometer as specified in the API-2540 standard.

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 53A -Generalized Crude Oils, Correction of Observed Density to Density at 15°C - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 53B -Generalized Products, Correction of Observed Density to Density at 15°C - First Edition, August 1980
- API MPMS 11.1 Volume XIV Table 53D Generalized Lubricating Oils, Correction of Observed Density to Density at 15°C - January 1982

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed density	Density at observed temperature	kg/m3		01300	0
Observed temperature		°C		-100200	15
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on density at 15 °C				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API2540 rounding	0: Disabled		APIROUND		0
	The calculations are performed with full precision.				
	A convergence limit of 0.000001 kg/m3 will be applied for the iterative				
	calculations.				
	1: Enabled				
	API-2540 rounding and truncating rules are applied.				
	A convergence limit of 0.05 kg/m3 will be applied as defined in the				
	standard.				
Hydrometer correction	0: Disabled		HYDROCOR		0
	1: Enabled				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	EU	STS	Aldilli	Failback
Status	1: Input argument out of range		515	FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Density at 15 °C	Density at 15°C	kg/m3 (s)	DENS15	Noconv	0
CTL	Volume correction factor for temperature.	-	CTL		1
KO	Actual value of constant K0 used for CTL calculation	-	КО		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
K2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor	1/°C	ALPHA		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the	-, -	PRDCUR		0
induct	actual selected product of table 53B (enumerative value as defined for		I NDCON		0
	input 'Product') else the output is set equal to input 'Product'				
Calculation out of range	input 'Product'), else the output is set equal to input 'Product'. With respect to the standard the input values are:	-		OOR	0
Calculation out of range	With respect to the standard the input values are: 0: In Range	-		OOR	0

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API 2540 rounding'.

fxAPI_Table53_2004

Density (T, P) --> Density (15°C, 0 bar(g))

This function converts a density value at the observed temperature and pressure to the density value at 15°C and 0 bar(g).

The temperature and pressure correction is according to API MPMS 11.1:2004.

An iterative calculation needs to be applied to convert the observed density to the value at base conditions.

NOTE: As opposed to API-2540, the 2004 standard does not include a correction for readings taken from a hydrometer and assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Remark	EU	SW tag	Range	Default
Optional tag name, tag description and tag group				
Density at the observed temperature and pressure	kg/m3		01300	0
Temperature at which the density is observed	°C		-100200	15
Pressure at which the density is observed	bar(g)		-1150	0
1: A - Crude Oil		PRDTYP		1
2: B - Auto select				
Selection based on density at 15 °C				
3: B - Gasoline				
4: B - Transition Area				
5: B - Jet Fuels				
6: B - Fuel Oil				
7: D - Lubricating Oil				
0: Disabled		APIROUND		0
The calculations are performed with full precision and the final CTL, CPL and				
CTPL values are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal				
places'				
1: Enabled				
The input and output values are rounded in compliance with the standard. The				
CTL, CPL and CTPL value are rounded to 5 decimal places.				
Remark	EU	SW tag	Alarm	Fallbac
0: Normal	-	STS		
1: Input argument out of range			FIOOR	
2: Calculation error			CALCERR	
3: No convergence			NOCONV	
Density at 15°C and 0 bar(g)	-	DENS15		0
Volume correction factor for temperature.	-	CTL		1
Value will be rounded according to input 'API rounding'				
Volume correction factor for pressure	-	CPL		1
Value will be rounded according to input 'API rounding'				
Combined volume correction factor	-	CTPL		1
CTPL = CTL * CPL				
Actual value of constant K0 used for CTL calculation	-	К0		0
Actual value of constant K1 used for CTL calculation	-	K1		0
Actual value of constant K2 used for CTL calculation	-	K2		0
Thermal expansion factor at 60 °F !	1/°F	ALPHA		0
	, 1/bar	F		0
	-			0
				÷
	-		OOR	0
			000	U U
0: In Range				
	Optional tag name, tag description and tag group Density at the observed temperature and pressure Temperature at which the density is observed Pressure at which the density is observed 1: A - Crude Oil 2: B - Auto select Selection based on density at 15 °C 3: B - Gasoline 4: B - Transition Area 5: B - Jet Fuels 6: B - Fuel Oil 7: D - Lubricating Oil 0: Disabled The calculations are performed with full precision and the final CTL, CPL and CTPL values are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal places' 1: Enabled The input and output values are rounded in compliance with the standard. The CTL, CPL and CTPL value are rounded to 5 decimal places. Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence Density at 15°C and 0 bar(g) Volume correction factor for pressure Value will be rounded according to input 'API rounding' Volume correction factor for pressure Value will be rounded according to input 'API rounding' Volume correction factor for pressure Value will be rounded according to input 'API rounding'	Optional tag name, tag description and tag group Image: Comparison of the second o	Approximation C C Density at the observed temperature and pressure kg/m3 Temperature at which the density is observed °C Pressure at which the density is observed bar(g) 1: A - Crude Oil PRDTYP 2: B - Auto select PRDTYP 3: B - Gasoline 4 4: B - Transition Area Pressure at which the density at 15 °C 3: B - Gasoline 4 4: B - Transition Area Pressure at the observed 5: B - Jet Fuels 6: B - Fuel Oil 6: B - Fuel Oil 7: D - Lubricating Oil 0: Disabled APIROUND The input and output values are rounded in compliance with the standard. The CTL, CPL and CTPL value are rounded to 5 decimal places. Remark EU SW tag 0: Normal - STS 1: Input and output values are rounded to 5 decimal places. S 12: Calculation error 3: No convergence - Density at 15°C and 0 bar(g) - DENS15 Volume correction factor for te	Optional tag name, tag description and tag group Image Image Density at the observed temperature and pressure kg/m3 0.1300 Temperature at which the density is observed °C -100.200 Pressure at which the density is observed °C -100.200 Pressure at which the density is observed bar(g) -1.150 1: A - Crude Oil PRDTYP Pressure at which the density is observed 2: B - Auto select Selection based on density at 15 °C Pressure at which the density is observed 3: B - Gasoline 4: B - Transition Area Pressure at which the density is observed PRDTYP 5: B - Jet Fuels 6: B - Fuel Oil Prevented at the input set of the

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table53E

Density (T) --> Density (15°C)

This function converts the density value at the observed

temperature to the corresponding density at 15°C.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-27).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed density	Density at the observed temperature	kg/m3		0750	0
Observed temperature	Temperature at which the relative density is observed	°C		-100150	15
API rounding	0: Disabled				0
	The calculations are performed with full precision and the output values are				
	not rounded				
	1: Enabled				
	The input and output values are rounded as defined in the standard				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Density at 15°C			DENS15		
CTL	Volume correction factor for temperature.	-	CTL		1
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
_	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

fxAPI_Table54_1952

Density (15°C) --> CTL

This function determines the volume correction factor for temperature CTL from the relative density value at 15°C and the observed temperature according to the API 1952 Table 54.

Compliance

• ASTM-IP Petroleum Measurement Tables, Metric Edition, Metric Units of Measurement, 1952

Boundaries

Table 54 contains values for the following range:

Input value	Normal Range	EU
Density at 15 °C	500 1100	kg/m3
Observed temperature	-50 +150	°C

Note that the table does not cover the full range, e.g. for a Density at 15 °C of 500 kg/m3the table only specifies values between -50 .. 55 °C

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density 15 °C	Specific gravity at 60°F	Kg/m3		01300	0
Observed temperature		°C		-100200	15

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
CTL	Volume correction factor for temperature.	-	CTL		1
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
5	0: In Range				
	1: Out of Range				

Calculations

The table values are the standard, so no calculations are involved. The function performs an interpolation between the table values that correspond to the input specific gravity and input temperature.

In case the combination of input values ('Specific gravity 60 $^{\circ}$ F' and Observed temperature') is not covered by the table, the output 'CTL' is set to 1 and output 'Calculation out of range' is set to 1.

fxAPI_Table54_1980

Density (15°C) --> CTL

This function calculates the volume correction factor for temperature CTL from the relative density value at 15°C and the observed temperature.

The temperature conversion is according to API-2540, Tables 54A (Generalized Crude Oils) and 54B (Refined Oil Products) and API MPMS 11.1 Chapter XIV Table 54D: 1984 (Lubricating Oils).

Compliance

- API MPMS 11.1 Volume X (API Standard 2540) Table 54A -Generalized Crude Oils, Correction of Volume to 15°C against Density at 15°F - First Edition, August 1980
- API MPMS 11.1 Volume X (API Standard 2540) Table 54B -Generalized Products, Correction of Volume to 15°C against Density at 15°C - First Edition, August 1980
- API MPMS 11.1 Volume XIV Table 54D Generalized Lubricating Oils, Correction of Volume to 15°C Against Density at 15°C - January 1982

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 15 °C	Density at 15°C and the equilibrium pressure	kg/m3		01300	0
Observed		°C		-100200	15
temperature					
Product	1: A - Crude Oil		PRDTYP	-	1
	2: B - Auto select				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API2540 rounding	0: Disabled		APIROUND	-	0
	The calculations are performed with full precision and the final CTL value is				
	rounded as specified by input 'CTL decimal places'				
	1: Enabled for computational value				
	API-2540 rounding and truncating rules are applied and the computational value				
	for CTL as specified in the standard is used, meaning that the CTL value has:				
	4 decimal places if CTL >=1				
	5 decimal places if CTL < 1.				
	2: Enabled for table value				
	API-2540 rounding and truncating rules are applied and the table value for CTL as				
	specified in the standard meaning that the CTL value has 4 decimal places in all				
	cases				
	3: Enabled with 5 decimal places				
	API-2540 rounding and truncating rules are applied, while the CTL value has 5				
	decimal places in all cases.				
	Note: although not strictly in accordance with the standard, this option is more				
	commonly used than option 'Enabled for computational value'				
Function outputs	Remark		EU SW t	ag Alarm	Fallback
Status	0: Normal		STS	-	
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
CTL	Volume correction factor for temperature.		- CTL		1
-	Value will be rounded according to input 'API2540 rounding'				-
КО	Actual value of constant K0 used for CTL calculation		- ко		0
K1	Actual value of constant K1 used for CTL calculation		- K1		0
K2	Actual value of constant K1 used for CTL calculation		- K1		0
	Actual value of constant N2 used for CT2 calculation		- 12		U

Alpha	Thermal expansion factor	1/°C	ALPHA
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	-	PRDCUR
	product of table 54B (enumerative value as defined for input 'Product'), else the output is		
	set equal to input 'Product'.		
Calculation out of	With respect to the standard the input values are:	-	OOR
range	0: In Range		
	1. Out of Range		

Calculations

The calculations are in full or partial compliance with the standard depending on input 'API 2540 rounding'.

fxAPI_Table54_2004

Density (15°C, 0 bar(g)) --> Density (T, P)

This function converts a density value at 15°C and 0 bar(g) to the density value at the observed temperature and pressure. The temperature and pressure correction is according to API MPMS 11.1:2004. **NOTE:** The 2004 standard assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Function inputs	Remark El	J	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 15 °C	Density at 15°C and 0 bar(g) kg	g/m3		01300	0
Observed temperature	Temperature at which the density is observed °C	:		-100200	15
Observed pressure	Pressure at which the density is observed ba	ar(g)		-1150	0
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on density at 15 °C				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API rounding	0: Disabled		APIROUND		0
	The calculations are performed with full precision and the final CTL, CPL and				
	CTPL values are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal				
	places'				
	1: Enabled				
	The input and output values are rounded in compliance with the standard. The				
	CTL, CPL and CTPL value are rounded to 5 decimal places.				
Function outputs	Remark	EU	SW ta	g Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence				
Observed density	Density at the observed temperature and pressure	-	DENS		0
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API rounding'				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
ко	Actual value of constant K0 used for CTL calculation	-	К0		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
K2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor at 60 °F !	1/°F	ALPHA	4	0
F	Compressibility factor	1/ba	ur F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected	- k	PRDC	JR	0
	product of table B (enumerative value as defined for input 'Product'), else the				
	output is set equal to input 'Product'.				
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
	0: In Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table54E

Density (15°C)>	CTL
-----------------	-----

This function calculates the volume correction factor for temperature from the relative density value at 15°C and the observed temperature.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-27).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 15°C		-		0750	0
Observed temperature	Temperature at which the relative density is observed	°C		-100150	15
API rounding	0: Disabled				0
	The calculations are performed with full precision and the output values are not				
	rounded				
	1: Enabled				
	The input and output values are rounded as defined in the standard				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		1
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence				
CTL	Volume correction factor for temperature	-	CTL		1
	Value will be rounded according to input 'API rounding'				
Calculation out of range	With respect to the standard the input values are:	-		OOR	0

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

0: In Range 1: Out of Range

fxAPI_Table59_2004

Density (T, P) --> Density (20°C, 0 bar(g))

This function converts a density value at the observed temperature and pressure to the density value at 20°C and 0 bar(g). The temperature and pressure correction is according to API MPMS 11.1:2004.

An iterative calculation needs to be applied to convert the observed density to the value at base conditions.

NOTE: As opposed to API-2540, the 2004 standard does not include a correction for readings taken from a hydrometer and assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed density	Density at the observed temperature and pressure	kg/m3	3	01300	0
Observed temperati	re Temperature at which the density is observed	°C		-10200	20
Observed pressure	Pressure at which the density is observed	bar(g)		-1150	0
Product	1: A - Crude Oil		PRDTYP		1
	2: B - Auto select				
	Selection based on density at 20 °C				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API rounding	0: Disabled		APIROUN	ND	0
	The calculations are performed with full precision and the final CTL, CPL and CTPL values				
	are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal places'				
	1: Enabled				
	The input and output values are rounded in compliance with the standard. The CTL, CPL				
	and CTPL value are rounded to 5 decimal places.				
Function outputs	Remark	EU	SW/ to g	Alarm	Fallback
Status	0: Normal	EU	SW tag	Aldrin	Failback
Status	1: Input argument out of range	-	313	FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Density at 20 °C	Density at 20°C and 0 bar(g)	-	DENS20	NOCONV	0
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API rounding'	-	CIL		1
CPL	Value will be rounded according to input Arriodining	_	CPL		1
CFL	Value will be rounded according to input 'API rounding'	-	CFL		T
CTPL	Combined volume correction factor CTPL = CTL * CPL	-	CTPL		1
KO	Actual value of constant K0 used for CTL calculation	-	KO		0
K0 K1	Actual value of constant K1 used for CTL calculation	-	K0 K1		0
K1 K2	Actual value of constant K2 used for CTL calculation	-	K1 K2		0
					0
Alpha F	Thermal expansion factor at 60 °F !	1/°F	ALPHA F		
•	Compressibility factor	1/bar	-		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected product	-	PRDCUR		0
	of table B (enumerative value as defined for input 'Product'), else the output is set equal to				
<u></u>	input 'Product'.				
Calculation out of	With respect to the standard the input values are:	-		OOR	0
range	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table59E

Density (T) --> Density (20°C)

This function converts the density value at the observed

temperature to the corresponding density at 20°C.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-27).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed density	Density at the observed temperature	kg/m3		0750	0
Observed temperature	Temperature at which the relative density is observed	°C		-100200	20
API rounding	0: Disabled		APIROUND		0
g	The calculations are performed with full precision and the output values are not rounded 1: Enabled				
	The input and output values are rounded as defined in the standard				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Density at 20°C			DENS20		0
CTL	Volume correction factor for temperature.	-	CTL		1
Calculation out of range	With respect to the standard the input values are:	-		OOR	0
-	0: In Range				
	1: Out of Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

fxAPI_Table60_2004

Density (20°C, 0 bar(g)) --> Density (T, P)

This function converts a density value at 20°C and 0 bar(g) to the density value at the observed temperature and pressure. The temperature and pressure correction is according to API MPMS 11.1:2004. **NOTE:** The 2004 standard assumes that the equilibrium pressure is below atmospheric pressure, so taking 0 psig as the base pressure.

Compliance

• API MPMS 11.1 Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products and Lubricating Oils, May 2004

Function inputs	Remark	EU SV	W tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 20 °C	Density at 20°C and 0 bar(g)	kg/m3		01300	0
Observed temperatur	re Temperature at which the density is observed	°C		-100200	60
Observed pressure		bar(g)		-1150	0
Product	1: A - Crude Oil	PI	RDTYP		1
	2: B - Auto select				
	Selection based on density at 20 °C				
	3: B - Gasoline				
	4: B - Transition Area				
	5: B - Jet Fuels				
	6: B - Fuel Oil				
	7: D - Lubricating Oil				
API rounding	0: Disabled	A	PIROUND		0
	The calculations are performed with full precision and the final CTL, CPL and CTPL				
	values are rounded as specified by the inputs 'CTL / CPL/ CTPL decimal places'				
	1: Enabled				
	The input and output values are rounded in compliance with the standard. The CTL,				
	CPL and CTPL value are rounded to 5 decimal places.				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence				
Observed density	Density at the observed temperature and pressure	-	DENS		0
CTL	Volume correction factor for temperature.	-	CTL		1
	Value will be rounded according to input 'API rounding'				
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API rounding'				
CTPL	Combined volume correction factor	-	CTPL		1
	CTPL = CTL * CPL				
ко	Actual value of constant K0 used for CTL calculation	-	K0		0
K1	Actual value of constant K1 used for CTL calculation	-	K1		0
K2	Actual value of constant K2 used for CTL calculation	-	K2		0
Alpha	Thermal expansion factor at 60 °F !	1/°F	ALPHA		0
F	Compressibility factor	1/ba	ar F		0
Product	When input 'Product' is 'B - Auto select', then the output is set to the actual selected produ	,	PRDCUF	2	0
	of table B (enumerative value as defined for input 'Product'), else the output is set equal to				
	input 'Product'.				
Calculation out of	With respect to the standard the input values are:	-		OOR	0
					-
range	0: In Range				

Calculations

The calculations are in either full or partial compliance with the standard, depending on whether API rounding is enabled or not.

fxAPI_Table60E

Density (20°C)>	CTL
-----------------	-----

This function calculates the volume correction factor for temperature from the relative density value at 20°C and the observed temperature.

The temperature correction is according to API MPMS 11.2.4:2007 (GPA TP-27).

Compliance

- API MPMS 11.2.4: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007
- GPA TP-27: Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E & 60E, September 2007

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Density at 20°C		-		0750	0
Observed temperature	Temperature at which the relative density is observed	°C		-100150	20
API rounding	0: Disabled		APIROUND		0
	The calculations are performed with full precision and the output values are not rounded 1: Enabled				
	The input and output values are rounded as defined in the standard				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
		EU -	SW tag STS	Alarm	Fallback
•	Remark			Alarm FIOOR	Fallback
•	Remark 0: Normal				Fallback
•	Remark 0: Normal 1: Input argument out of range			FIOOR	Fallback
Status	Remark O: Normal 1: Input argument out of range 2: Calculation error			FIOOR	Fallback
Function outputs Status CTL	Remark O: Normal 1: Input argument out of range 2: Calculation error 3: No convergence		STS	FIOOR	Fallback

Calculations

The calculations are in either full or partial compliance with the standard, depending on the selected type of API rounding.

1: Out of Range

fxASTM_D1550_RD60

This function calculates the relative density at 60°F and 0 psig of Butadiene based on ASTM Designation 1550. The ASTM-D1550 standard specifies several tables. This function uses table 1, which contains values for the relative density at 60°F as a function of the observed relative density and the observed temperature. The compressibility factor is calculated in accordance with API MPMS 11.2.2:1984.

Compliance

- ASTM Designation: D1550 -94 (Reapproved 2005), Standard ASTM Butadiene Measurement Table 1 Reduction of observed specific gravity to specific gravity at 15.6/15. °C (60/60°F)
- API MPMS 11.2.2 Compressibility Factors for Hydrocarbons: 0.350 - 0.637 Relative Density (60°F/60°F) and -50°F to 140°F Metering Temperature - Second Edition, October 1986

Boundaries

ASTM D1550 table 1 consists of table values with a resolution of 0.005 for the relative density and 1°F for the temperature. The function applies a linear interpolation between table values based on the input values. The table specifies relative density at 60°F values that are limited to a low value of 0.621 and a high value of 0.634. When the combination of input values lies outside the range covered by the table, the function outputs either the low or high table value depending on whether the input values lay below or above the table limits.

API MPMS 11.2.2 applies for the following range:

- 0.350 to 0.637 (relative density)
- -50 to 140 °F
- 0 to 2200 psig

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Observed relative density		-	01	0
Observed temperature	Temperature at which the relative density is observed	°F	-100150	20
Observed pressure	Pressure at which the relative density is observed	Psig	-102500	0
API 11.2.2 rounding	0: Disabled			0
	The calculations are performed with full precision			
	1: Enabled			
	The input and intermediate values are rounded and truncated as defined in the standard			

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence				
Relative density at 60°F		-	RD60		0
F	Compressibility factor	1/psi	F		0
	The output value will be either rounded or not depending input 'API 11.2.2 rounding'				
CTL	Volume correction factor for temperature.	-	CTL		1
CPL	Volume correction factor for pressure	-	CPL		1
	Value will be rounded according to input 'API 11.2.2 rounding'				
ASTM D1550 calculation	With respect to ASTM D1550 table 1 the input values are:	-	ASTM_OOR		0
out of range	0: In Range				
	1: Out of Range				
API 11.2.2 calculation out	With respect to API 11.2.2 the conditions of density, temperature and pressure are:		API_OOR		
of range	0: In Range				
	1: Out of Range				

Calculations

The function performs the following iterative algorithm to calculate the relative density at 60 °F and 0 psig. No rounding is applied.

- 1 At the start of the iteration the relative density at [60 $^{\circ}$ F, 0 psig] is set equal to the observed relative density and the CPL value is set to 1.
- 2 The relative density corrected for pressure is calculated by dividing the observed relative density by the CPL value.
- 3 The CTL value and the relative density at [60 °F, equilibrium pressure] is calculated from the relative density corrected for pressure and the observed temperature according to ASTM D1550 Table 1
- 4 The compressibility factor F is calculated according to API MPMS 11.2.2 from the relative density at [60 °F, equilibrium pressure] and the 'Observed temperature'. Depending on

setting 'API 11.2.2. rounding' the rounding and truncation rules of API 11.2.2. are applied for this step.

- 5 The CPL value is calculated from the calculated compressibility factor and the 'Observed pressure' input value.
- 6 The new value for relative density at [60°F, 0 psig] is calculated by dividing the observed density by the CTL and CPL values.
- 7 Steps 2 through 6 are repeated until the absolute difference between two consecutive relative density values is less than the convergence limit of 1e-8.
- 8 When no convergence is achieved in 20 iterations then the status output is set to 'No convergence' and the relative density output is set to 0.

fxASTM_D1550_Ctl

This function calculates the Ctl value (VCF) of Butadiene based on the ASTM Designation 1550. The standard specifies several tables. This function uses table 2, which contains values for the volume correction factor as a function of the relative density at 60°F and the observed temperature.

Compliance

• ASTM Designation: D1550 -94 (Reapproved 2005), Standard ASTM Butadiene Measurement Table 2 Reduction of Observed Volume to 15.6°C (60°F) Against Specific Gravity 60/60°F

Function inputs	Remark	EU	SV	V tag	Range	Default
Name	Optional tag name, tag description and tag group					
Relative density at 60°F		-			01	0
Observed temperature	Temperature at which the relative density is observed	۴			-100150	20
Function outputs	Remark		EU	SW tag	Alarm	Fallback
Status	0: Normal		-	STS		
	1: Input argument out of range				FIOOR	
	2: Calculation error				CALCERR	
Ctl	Volume correction factor for temperature. The output value will NOT b	e rounded.	-	CTL		1
Calculation out of range	With respect to the standard the input values are:		-		OOR	0
	0: In Range					
	1: Out of Range					

Calculations

The Standard consists of a set of table values with a resolution of 0.001 for the relative density at 60°F and 1°F for temperature. The function applies a linear interpolation between table values based on the unrounded input values. When an input value lies outside the range of the table the function limits the input value to the minimum or maximum value of the table.

fxASTM_D1555_Dens60F

This function calculates the relative density at 60°F and 0 psig according ASTM Designation 1555. The ASTM-D1550 standard specifies equations for the calculation of Ctl, the liquid correction factor for temperature, for several aromatic hydrocarbons and cyclohexane as a function of the observed temperature. The compressibility factor is calculated in accordance with API MPMS 11.2.1:1984.

Compliance

- ASTM Designation: D1555 -04, Standard Test Method for Calculation of Volume and Weight of Industrial Aromatic Hydrocarbons and Cyclohexane
- API MPMS 11.2.1 Compressibility Factors for Hydrocarbons: 0 - 90°API Gravity Range - First Edition, August 1984

Boundaries

The standard defines an upper limit for the temperature of 150°F for p-xylene and 140°F for all other products.

API MPMS 11.2.1 defines the following limits on the input values:

- 0 to 90 °API
- -20 to +200 °F
- 0 to 1500 psig.

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Observed density		g/cc	01.3	
Observed temperature		°F	-100250	20
Observed pressure		psig	-102000	0
Product	1: Benzene			1
	2: Cumene			
	3: Cyclohexane			
	4: Ethylbenzene			
	5: Styrene			
	6: Toluene			
	7: m-Xylene			
	8: o-Xylene			
	9: p-Xylene			
	10: 300-350°F Aromatic Hydrocarbons			
	11: 350-400°F Aromatic Hydrocarbons			
ASTM D1555 rounding	0: Disabled			0
	The calculations are performed with full precision			
	1: Enabled			
	The input and output values are rounded and truncated as defined in the standard			
API 11.2.1 rounding	0: Disabled			0
2	The calculations are performed with full precision			
	1: Enabled			
	The input and intermediate values are rounded and truncated as defined in the standard			
Equilibrium pressure	The equilibrium pressure is considered to be 0 psig for liquids which have an equilibrium	psig	02000	0
	pressure less than atmospheric pressure (in compliance with API MPMS 12.2 par. 12.2.5.4)			
Function outputs	Remark EU	SW tag	Alarm	Fallback
Status	0: Normal -	STS		
	1: Input argument out of range		FIOOR	
	2: Calculation error		CALCERR	
	3: No convergence			
Density at 60°F	g/cc	DENS60		0
F	Compressibility factor 1/psi	F		0

	5. No convergence			
Density at 60°F		g/cc	DENS60	0
F	Compressibility factor	1/psi	F	0
	The output value will be either rounded or not depending input 'API 11.2.1 rounding'			
CTL	Volume correction factor for temperature.	-	CTL	1
	Value will be rounded according to input 'ASTM D1555 rounding'			
CPL	Volume correction factor for pressure	-	CPL	1
	Value will be rounded according to input 'API 11.2.1 rounding'			
ASTM D1555 calculation	With respect to ASTM D1555 the temperature value is:		ASTM_OOR	0
out of range	0: In Range			
	1: Out of Range			
API 11.2.1 calculation out	With respect to API 11.2.1 the conditions of density, temperature and pressure are:		API_OOR	0
of range	0: In Range			
	1: Out of Range			

Calculations

ASTM D1555 contains both formulas and tables for the Ctl (called VCF in the standard) for the different product. Please note the formulas are the standard and not the tables. This function therefore applies the formula to calculate the Ctl value.

The function performs the following iterative algorithm to calculate the relative density at 60 °F and 0 psig. No rounding is applied.

- 1 At the start of the iteration the density at [60 °F, 0 psig] is set equal to the observed density and the CPL value is set to 1.
- 2 The density corrected for pressure is calculated by dividing the observed density by the CPL value.
- 3 The CTL value and the density at [60 °F, equilibrium pressure] is calculated from the density corrected for pressure and the observed temperature according to ASTM D1555
- 4 The compressibility factor F is calculated according to API MPMS 11.2.1 from the density at [60 °F, equilibrium pressure] and the 'Observed temperature'. Depending on setting 'API 11.2.1 rounding' the rounding and truncation rules of API 11.2.1 are applied for this step.
- 5 The CPL value is calculated from the calculated compressibility factor and the 'Observed pressure' input value.
- 6 The new value for density at [60°F, 0 psig] is calculated by dividing the observed density by the CTL and CPL values.
- 7 Steps 2 through 6 are repeated until the absolute difference between two consecutive relative density values is less than the convergence limit of 1e-8.

When no convergence is achieved in 20 iterations then the status output is set to 'No convergence' and the density output is set to 0.

fxASTM_D1555_Ctl

This function calculates the Ctl value from the observed temperature for several aromatic hydrocarbons and cyclohexane based on the ASTM Designation 1555.

Compliance

• ASTM Designation: D1555 -04, Standard Test Method for Calculation of Volume and Weight of Industrial Aromatic Hydrocarbons and Cyclohexane

Boundaries

The standard defines an upper limit for the temperature of 150° F for p-xylene and 140° F for all other products.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Observed temperature	Temperature at which the relative density is observed	°F		-100250	20
ASTM D1555 rounding	0: Disabled				0
	The calculations are performed with full precision				
	1: Enabled				
	The input temperature value is rounded to 0.1°F and the output Ctl value is rounded				
	to 5 decimal places as defined in the standard				
Product	1: Benzene				1
	2: Cumene				
	3: Cyclohexane				
	4: Ethylbenzene				
	5: Styrene				
	6: Toluene				
	7: m-Xylene				
	8: o-Xylene				
	9: p-Xylene				
	10: 300-350°F Aromatic Hydrocarbons				
	11: 350-400°F Aromatic Hydrocarbons				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Ctl	Volume correction factor for temperature	-	CTL		1
Calculation out of range	With respect to the standard the input value is:	-	OOR		0
	0: In Range				
	1: Out of Range				

Calculations

ASTM D1555 contains both formulas and tables for the Ctl (called VCF in the standard) for the different product. Please note the formulas are the standard and not the tables. This function therefore applies the formula to calculate the Ctl value.

fxBatchFWA

The function calculates a **f**low-**w**eighted **a**verage (FWA) for a batch.

A batch can be any batch type of process, such as product

loading, meter proving or transmitter validation.

The function weights the input value with a flow increment and

updates the average accordingly. The flow increment is provided

by either a 'fxTotalizerDelta' or a 'xTotalizerRate' function.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
Input value	Value to be averaged	Same as linked cell		-1e111e11	
Enabled	0: Disabled		EN		
	1: Enabled				
Increment	Flow increment with which the input value is weighed.	Same as linked cell		01e11	
	Must refer to the corresponding output from a 'TotalizerRate' or				
	'TotalizerDelta' function				
	Negative values will be ignored.				
Reset command	Trigger to reset the batch.				
	At a batch reset the current average is stored in the previous value and the				
	current value is reset to 0				
Identification	Batch identification.		ID		
	Can be any string of maximum 255 characters long.				
	If multiple identifications need to be stored for future referral, e.g. the batch				
	number, the ship name and the nomination number, then the individual strings				
	should be concatenated with an "." character in-between.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current average	Average calculated over the current batch.	Same as input 'Input value'	СВ		0
Previous average	Average of the previous batch.	Same as input 'Input value'	PB		0

fxBatchHistData

The function retrieves historical 'batch' data from the flow computer persistent memory.

A 'batch' can be any batch type of process, such as product loading, meter proving or transmitter validation.

The function retrieves one or more historical values for the specified function instance. The function instance must be one of the following function types:

The 2nd retrieved historical data value

- fxBatchFWA
- fxBatchLatch
- fxBatchStore
- fxBatchTotal
- fxBatchTWA
- fxBatchWatch

The function instance is referred to by its name (i.e. the 1st argument of the referred function).

2

Inputs and outputs

Value 2

etc.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
First ID	Optional.		FIRSTID		
	Batch identification of the first historical batch for which the value has to be retrieved.				
Last ID	Optional.		LASTID		
	Batch identification of the last historical batch for which the value has to be retrieved.				
Sequence	Sequence in which the retrieved values must be copied to the function outputs.				1
	1: Ascending order (Value 1 contains oldest value)				
	2: Descending order (Value 1 contains newest value)				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Number of values	Number of historical values that was retrieved from the flow computer memory according		ACTSIZE		
	to the input criteria				
Value 1	The 1st retrieved historical data value		1		

fxBatchLatch

The function latches a value at every batch reset.

Inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
Input value	Value to be latched	Same as linked cell			
Latch command *	Trigger to latch the value				
Reset command *	Trigger to reset the batch.				
	At every batch reset the last latched value is stored in the previous latch				
	output value and the current latch output value is reset to 0				
Identification	Batch identification.		ID		
	Can be any string of maximum 255 characters long.				

NOTE: When the latch and reset commands are given at the same time, then the current value becomes the 'Previous latch' output value and the current latch is reset to 0.

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current latch	Value that is latched since the last batch reset. Is reset to 0 at every batch reset.	Same as input 'Input value'	СВ		0
Previous latch	Value that was latched during the previous batch. If no value was latched during the previous batch, then the value is set to 0.	Same as input 'Input value'	РВ		0

fxBatchMax

The function determines the maximum for a particular input value over a batch.

A batch can be any batch type of process, such as product loading, meter proving or transmitter validation.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
Input value	Value for which the maximum has to be determined	Same as linked cell		-1e111e11	
Enabled	0: Disabled		EN		
	1: Enabled				
Reset command	Trigger to reset the batch.				
	At a batch reset the current average is stored in the previous value and the				
	current value is reset to 0				
Identification	Batch identification.		ID		
	Can be any string of maximum 255 characters long.				
	If multiple identifications need to be stored for future referral, e.g. the				
	batch number, the ship name and the nomination number, then the				
	individual strings should be concatenated with an "." character in-between.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current minimum	Minimum over the current batch.	Same as input 'Input value'	СВ		0
Previous minimum	Minimum over the previous batch.	Same as input 'Input value'	PB		0

fxBatchMin

The function determines the minimum for a particular input value over a batch.

A batch can be any batch type of process, such as product loading, meter proving or transmitter validation.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
Input value	Value for which the minimum has to be determined	Same as linked cell		-1e111e11	
Enabled	0: Disabled		EN		
	1: Enabled				
Reset command	Trigger to reset the batch.				
	At a batch reset the current average is stored in the previous value and the				
	current value is reset to 0				
Identification	Batch identification.		ID		
	Can be any string of maximum 255 characters long.				
	If multiple identifications need to be stored for future referral, e.g. the batch				
	number, the ship name and the nomination number, then the individual strings				
	should be concatenated with an "." character in-between.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current minimum	Minimum over the current batch.	Same as input 'Input value'	CB		0
Previous minimum	Minimum over the previous batch.	Same as input 'Input value'	PB		0

fxBatchTotal

The function accumulates a flow increment into a batch total. At every batch reset the current batch total is stored into the previous value and the current value is reset to 0.

The flow increment originates from a 'TotalizerRate' or 'TotalizerDelta' function.

1: On

Note: stays 'On' for one calculation cycle only)

Function inputs	Remark		EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.					
Increment	Increment value to be added to the batch total.		Same as linked		01e11	
	Negative values will be ignored, so the batch total will not decr	rease.	cell			
Enabled	0: Disabled			EN		
	1: Enabled					
Identification	Batch identification.			ID		
	Can be any string of maximum 255 characters long.					
	If multiple identifications need to be stored for future referral,	e.g. the batch				
	number, the ship name and the nomination number, then the i	ndividual strings				
	should be concatenated with an "." character in-between.					
Rollover value	The batch total will be reset to 0 when it reaches the rollover v	alue	Same as input	ROVAL	01e15	1e12
			Increment			
Decimal places	Defines the number of decimal places for the current and prev values.	ious total output		DECPLS	-110	-1
	-1 means full precision (no rounding applied)					
Function outputs	Remark	EU	SW tag	Alarm	Fa	llback
Current total	Accumulated total for the current batch, so since the	Same as input	CB		0	
	last batch reset.	'Increment'				
Previous total	Accumulated total for the previous batch	Same as input	PB		0	
		'Increment'				
Rollover flag	Flag indicating a rollover to 0.	0		ROALI	М	
	0: Off					

fxBatchTWA

The function calculates a **ti**me-**w**eighted **a**verage (TWA) for a batch. At a batch reset the current average is stored in the previous value and the current value is reset to 0.

The function weights the input value with the time (in fact the actual calculation cycle time) and updates the average accordingly.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
Input value	Value to be averaged	Same as linked cell		-1e111e11	
Enabled	0: Disabled		EN		
	1: Enabled				
Reset command	Trigger to reset the batch.				
	At a batch reset the current latch is stored in the previous value and the				
	current latch is reset to 0				
Identification	Batch identification.		ID		
	Can be any string of maximum 255 characters long.				
	If multiple identifications need to be stored for future referral, e.g. the batch				
	number, the ship name and the nomination number, then the individual				
	strings should be concatenated with an "." character in-between.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current average	Average calculated over the current batch.	Same as input 'Input value'	CB		0
Previous average	Average of the previous batch.	Same as input 'Input value'	PB		0

fxBatchWatch

The function 'remembers' that a condition has been valid during a batch.

A typical example is a transmitter that was overridden with a keypad value.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag-prefix and retentive storage.				
Condition	0: Condition is not valid				
	<>0: Condition is valid				
Enabled	0: Disabled	EN			
	1: Enabled				
Reset command	Trigger to reset the batch.				
	At a batch reset the current watched value is stored in the previous value and the current				
	watched value is reset to 0				
Identification	Batch identification.		ID		
	Can be any string of maximum 255 characters long.				
	If multiple identifications need to be stored for future referral, e.g. the batch number, the ship				
	name and the nomination number, then the individual strings should be concatenated with an				
	"." character in-between.				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current watch	Indicates whether or not the condition has been valid during the current batch:		CB		0
	0: Not valid				-
	1: Valid				
Previous watch	Indicates whether or not the condition has been valid during the previous batch:		PB		0
	0: Not valid				-
	1: Valid				

fxConvertUnit

This function converts a value expressed in a particular unit into the corresponding value expressed in another unit. The input and output unit must belong category, otherwise the conversion fails.

Function inputs and outputs

1: Failure

Function inputs	Remark EU	SW tag I	Range	Defa	ult
Name					
Input value	The value to be converted				
Input unit	Unit of the value to be converted				
	Use one of the "xu" unit constants.				
Output unit	Unit of the output value				
	Use one of the "xu" unit constants.				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Output value		<output unit=""></output>	VAL		0
Conversion failure	The conversion fails when the input unit and output unit do not belong same unit category (or also when the input unit and / or output unit are valid unit).		CONVFAIL		

fxDeviationAlarm

The function watches the deviation, or the difference or discrepancy, between two values and generates an alarm when the deviation exceeds the specified limit.

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input value 1	Must be linked to another cell	Same as linked cell		-1e111e11	0
Input value 2	Must be linked to another cell	Must be same as for input value 1		-1e111e11	0
Deviation type	Determines whether the absolute or the relative difference needs to be checked. The unit of the deviation limit will be in accordance. 1: Absolute 2: Relative		DEVTYP		1
Deviation limit	The unit depends on the 'Deviation type'	Absolute: Same as input value 1 Relative : %	DEVLIM	01e11	0
Enabled	Enabled or disabled the alarm			True or false	True
Alarm type	1: Alarm 2: Warning				1
Function outputs	Remark	EU SW tag	Alarm	Fallbad	ck

Deviation alarm	0: Normal	-	DEVALM
	1: Alarm		DEVALM

Logic

Deviation type = 1 (Absolute)

• A deviation alarm is raised when the absolute difference between the two values is greater than the 'Discrepancy limit'.

Deviation type = 2 (Relative)

• A deviation alarm is raised when the absolute difference between the two values divided by the minimum of the two values times 100 % is greater than the 'Discrepancy limit'.

NIST1045

The function calculates the density of Ethylene (C2H4, also called Ethene) based on the NIST-1045 Equation Of State in metric units.

References

• R.D. McCarty and R.T. Jacobsen "An Equation of State for Fluid Ethylene", National Bureau of Standards (NBS), US, Technical Note 1045, 1981.

Boundaries

The equation of state is valid from 104 K to 400 K (-170 .. +127 °C) and for pressures up to 40 MPa (400 bar).

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Temperature		°C	-200200	0
Pressure		bar(a)	500	0
Rounding	0: Disabled	-		1
	The calculations are performed with full precision. A convergence limit of 1e-10 kg/m3 will be applied for the iterative calculations. 1: Enabled The calculations are performed in full compliance with the standard. The input, intermediate and output values are rounded as specified and also the iteration limit as specified in the standard is used to achieve convergence.			
Function output		U	Fallb	ack
Status	0: Normal			
	1: Input argument out of range			

	1: Input argument out of range		
	2: Calculation error		
	3: No convergence		
Density		kg/m3	0
Compressibility		-	0
Equilibrium pressure	Equilibrium pressure at the observed temperature.	bar(a)	0
	Also referred to as vapor pressure or saturated pressure		
Range	With respect to the standard the inputs are:	-	0
	0: In Range		
	1: Out of Range		

Calculations

The calculations are in compliance with the standard.

fxEthylene_IUPAC_C

The function calculates the compressibility factor and the density of Ethylene (C2H4, also called Ethene) based on the Equation Of State published by IUPAC and in **US customary units.**

References

• Ethylene (Ethene), International Thermodynamic Tables of the Fluid State Vol. 10 (1988), IUPAC, ISBN 0-63201-7090.

Boundaries

The limits of the tables are 104 K to 320 K (-272 .. +116 °F) for pressures up to 270 MPa (39160 psi) and 104K to 450K (-272 .. +350 °F) for pressures up to 40 MPa (5800 psi).

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Temperature		°F	-300200	0
Pressure		psia	050000	0
Function outputs	Remark		EU	Fallback
Status	0: Normal			
	1: Input argument out of range			
	2: Calculation error			
	3: No convergence			
Density			lbm/ft3	0
Compressibility			-	0
Equilibrium pressure	Equilibrium pressure at the observed temperature.		psia	0
	Also referred to as vapor pressure or saturated pressure			
Range	With respect to the combination of temperature and pressure is:		-	0
2	0: In Range			
	1: Out of Range			

Calculations

The calculations are in compliance with the standard.

fxEthylene_IUPAC_M

The function calculates the compressibility factor and the density of Ethylene (C2H4, also called Ethene) based on the Equation Of State published by IUPAC and in **metric units**.

References

• Ethylene (Ethene), International Thermodynamic Tables of the Fluid State Vol. 10 (1988), IUPAC, ISBN 0-63201-7090.

Boundaries

The limits of the tables are 104 K to 320 K (-170 .. +47 °C) for pressures up to 270 MPa (2700 bar) and 104K to 450K (-170 .. +177 °C) for pressures up to 40 MPa (400 bar).

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group		-	
Temperature		°C	-200200	0
Pressure		bar(a)	3000	0
Function outputs	Remark		EU	Fallback
Status	0: Normal			
	1: Input argument out of range			
	2: Calculation error			
	3: No convergence			
Density			kg/m3	0
Compressibility			-	0
Equilibrium pressure	Equilibrium pressure at the observed temperature.		bar(a)	0
	Also referred to as vapor pressure or saturated pressure			
Range	With respect to the combination of temperature and pre	ssure is:	-	0
	0: In Range			
	1: Out of Range			

Calculations

The calculations are in compliance with the standard. Because the IUPAC Equation Of State specifies the calculation of the pressure from a known temperature and density iteration is required to determine the density from the input pressure. A convergence limit of 0.0005 kg/m3 is applied. A maximum of 20 iterations is applied.

fxGasViscosity_2004

The dynamic viscosity of natural gas is calculated in accordance with a method developed at the Rostock University in Germany and published in 2004 in the 'International Journal of the Thermophysics'. The estimated uncertainty of the calculated viscosity is 0.5% for natural gas (0.3% for pure methane).

Reference

 Viscosity Measurements and Predictions for Natural Gas, P. Schley, M. Jaeschke, C. Kuchenmeister and E. Vogel, International Journal of Thermophysics, Vol. 25, No. 6, November 2004 (© 2004)

Boundaries

The limits of the tables are 250 K to 450 K (-24 $_{\rm ..}$ +177 °C) for pressures up to 30 MPa (300 bar).

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Density	Density value	kg/m3	02000	0
Temperature	Temperature value	°C	-200+400	0
Composition	Standard composition as defined in section 'Standard gas composition'.	mol/mol	01	0

Function outputs	Remark	EU	Fallback
Status	0: Normal		
	1: Input argument out of range		
	2: Calculation error		
	3: No convergence		
	4: Mole fractions do not add up to 1.0 +- 0.0001		
	6: Hardware not supported		
Dynamic viscosity		Pa.s	0
Range	With respect to the combination of temperature and pressure is:		0
	0: In Range		
	1: Out of Range		

Calculations

The calculations are in accordance with the publication, which is based on the following 12 components: methane (+ hydrogen), nitrogen (+ helium + oxygen/argon), carbon dioxide, ethane, propane, n-butane, ibutane, n-pentane (+ benzene), isentane (+ neopentane), n-hexane (hexanes + toluene), n-heptane (heptanes), and n-octane (octanes + nonanes+ C10 plus higher + xylenes).

The function uses the 'Standard gas composition' as used by most gas property functions. The 22 components of input Composition are lumped to these 12 components as defined in the following table.

NOTES:

- Components 'Water', 'Hydrogen sulphide' and 'Carbon monoxide' are not supported by the publication and will therefore be neglected by the function. The lumped composition is normalized to 1 and then used in the calculation.
- The publication also mentions components benzene, toluene and xylenes, which are not part of the 'Standard gas composition'. To adhere strictly to the publication, add 'Benzene' to input 'n-Pentane', 'Toluene' to input 'n-Hexane' and 'Xylenes' to input 'n-Octane'.

Input component	Added to / neglected
Methane	Methane
Nitrogen	Nitrogen
Carbon Dioxide	Carbon Dioxide
Ethane	Ethane
Propane	Propane
Water	Neglected
Hydrogen Sulphide	Neglected
Hydrogen	Methane
Carbon Monoxide	Neglected
Oxygen	Nitrogen
i-Butane	i-Butane
n-Butane	n-Butane
i-Pentane	i-Pentane
n-Pentane	n-Pentane
n-Hexane	n-Hexane
n-Heptane	n-Heptane
n-Octane	n-Octane
n-Nonane	n-Octane
n-Decane	n-Octane
Helium	Nitrogen
Argon	Nitrogen
Neo-Pentane	Iso-Pentane

fxGenerateReport

This function generates prints and stores a report.

Function inputs	Remark			EU	SW tag	Range	Default
Name	Report definition						
	Must be the name of the report definition (Flow-Xpress	, section Reports).					
Event	Event to generate the report.						
	Event occurs when value changes from zero to non-zero	o (or from FALSE to	TRUE).				
Identifier	Optional report file name, defined as a string						
	When defined the Identifier is used as the report file na	me.					
	When left empty, the UniqueMethod setting as defined	for the report defin	ition is used for the				
	report file name (Flow-Xpress, section Reports).						
Printer	Optional printer.						
	Must be the name of one of the printers that are define	d in Flow-Xpress.					
	When defined this printer is used instead of the printer	that is assigned to	the report template				
	(Flow-Xpress, section Reports).						
	When left empty the printer that is assigned to the repo	ort template is used	l.				
Number of copies	Number of copies to print.						1
	This setting is ignored when no printer is defined.						
Function outputs	Remark	EU	SW tag	Alarm		Fallb	ack
C+-+			CTC				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range or in conflict			FIOOR	
	2: Latest report could not be generated			RPTERR	

fxGERG2008_Gas

The compressibility, density, speed of sound and isentropic coefficient of a gas are calculated from its composition, temperature and pressure in accordance with the GERG-2008 equation of state. The function uses an optimized routine that only applies when fluid is in the gaseous state (100% gas) and that requires limited CPU time (suitable for processing in the Spirit^{IT} products).

Compliance

• The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. Kunz, O., Wagner, W. Submitted to J. Chem. Eng. Data 57 (2012).

Boundaries

The GERG-2008 calculation has defined uncertainty bounds for fluids that lie within the 'Normal range'. Also an 'Expanded range' of gas mixtures is defined for which the calculation has a higher uncertainty. Using the calculation at conditions outside the 'Expanded range' is not recommended.

Input value	Normal Range	Expanded Range	EU
Pressure	0 35	0 70	MPa(a)
Temperature	90450	60700	к
Pressure	0 350	0 700	bar(a)
Temperature	-183 +177	-213 +426	°C
Pressure	0 5076	0 10153	psia
Temperature	-298 +350	-352 +800	°F
Mole fraction of all	0.00 1.00	0.00 1.00	-
components			

Function inputs and outputs

Function inputs	Remark	EU	SW tag		Range	Defa	ult
Name	Optional tag name, tag description and tag group						
Pressure	Pressure value	bar(a)			02000	1.013	325
Temperature	Temperature value	°C			-200+400	0	
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	СОМР		01	0	
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane 2: Add to n-Pentane 3: Neglect	-	NEOC5_MOE	DE		1	
Function outputs	Remark			EU	SW tag	Alarm	Fallbac
Status	0: Normal				STS		
	1: Input argument out of range					FIOOR	
	2: Calculation error					CALCERR	
	3: No convergence					NOCONV	
	4: Mole fractions do not add up to 1.0 +- 0.00	01				COMPERR	
	6: Hardware not supported						
Compressibility				-	Z		1
Mass Density				kg/m3	MASDENS		0
Molar Density				kmol/m3	MOLDENS		0
Molar Mass				kg/kmol	MOLMASS		0
Speed of Sound				m/s	SOS		0
Isentropic Exponent				-	К		0
Range	0: In Normal Range				RANGE		0
	All inputs are within the 'Normal Range'						
	1: In Extended Range						
	One or more inputs within the 'Extended Rang	ge, but none of t	he inputs outside				
	the Extended rang (outputs values have highe	er uncertainty)					
	2: Out of Range						
	One or more inputs outside the 'Extended Ra	nge' (using the c	alculation is not			OOR	
	recommended in this case)						

Calculations

The calculations are as documented in the reference.

fxGERG2008_Flash

The compressibility and density of a gas/liquid mixture are calculated from its composition, temperature and pressure in accordance with the GERG2008 standard.

Compliance

- Kunz, O., and W. Wagner. "The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004." Journal of Chemical & Engineering Data 57.11 (2012): 3032-3091.
- W. Wagner. "Description of the Software Package for the Calculation of Thermodynamic Properties from the GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures".

Boundaries

The GERG2008 calculation has defined uncertainty bounds for gas mixtures that lie within the 'Normal range'. Also an 'Expanded range' of gas mixtures is defined for which the GERG2008 calculation has a higher uncertainty. Using the GERG2008 calculation for gas mixtures that lie outside the 'Expanded range' is not recommended.

Input value	Normal Range	Expanded Range	EU
Pressure	0 350	0 700	bar(a)
Temperature	-183 +177	-213 +427	°C
Mole fraction of Methane	0.00 1.00	0.00 1.00	-
Mole fraction of Ethane	0.00 1.00	0.00 1.00	-
Mole fraction of Propane	0.00 1.00	0.00 1.00	-
Mole fraction of Butanes	0.00 1.00	0.00 1.00	-
Mole fraction of Pentanes	0.00 1.00	0.00 1.00	-
Mole fraction of Hexanes Plus	0.00 1.00	0.00 1.00	-
Mole fraction of Carbon monoxide	0.00 1.00	0.00 1.00	-
Mole fraction of Carbon dioxide	0.00 1.00	0.00 1.00	-
Mole fraction of Nitrogen	0.00 1.00	0.00 1.00	-
Mole fraction of Helium	0.00 1.00	0.00 1.00	-
Mole fraction of Argon	0.00 1.00	0.00 1.00	-
Mole fraction of Oxygen	0.00 1.00	0.00 1.00	-
Mole fraction of Hydrogen	0.00 1.00	0.00 1.00	-
Sulphide			
Mole fraction of Hydrogen	0.00 1.00	0.00 1.00	-
Mole fraction of Water	0.00 1.00	0.00 1.00	-

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Pressure	Pressure value	bar(a)		02000	1.01325
Temperature	Temperature value	°C		-200+400	0
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	COMP	01	0
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane 2: Add to n-Pentane 3: Neglect	-	NEOC5_MODE		1

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
	4: Mole fractions do not add up to 1.0 +- 0.0001			COMPERR	
	6: Hardware not supported				
Vapor fraction			FV		0
Compressibility vapor	Compressibility of the vapor fraction of the mixture		ZV		0
Compressibility liquid	Compressibility of the liquid fraction of the mixture		ZL		0
Compressibility total	Compressibility of the mixture		Z		0
Density vapor	Density of the vapor fraction of the mixture	kg/m3	DV		0
Density liquid	Density of the liquid fraction of the mixture	kg/m3	DL		0
Density total	Density of the mixture	kg/m3	D		0

Calculations

The calculations are as documented in the standard.

fxGPA_TP15

The GPA-TP15 standard defines a generalized correlation method to determine the vapor pressure (i.e. the equilibrium pressure) for natural gas liquids (NGL).

The vapor pressure is required by the API 11.2.2 and API 11.1:2004 calculations of the CPL value for light hydrocarbon liquids that have a vapor pressure above atmospheric pressure.

References

- API MPMS 11.2.2 Addendum Compressibility Factors for Hydrocarbons: Correlation Factors of Vapor Pressure for Commercial Natural Gas Liquids - First Edition, December 1994
- GPA Technical Publication TP-15 A Simplified Vapor Pressure Correlation for Commercial NGLs - 1988
- API MPMS 11.2.5 A Simplified Vapor Pressure Correlation for Commercial NGLs - September 2007
- GPA Technical Publication TP-15 A Simplified Vapor Pressure Correlation for Commercial NGLs - September 2007
- ASTM Technical Publication [Stock No. PETROLTBL-TP15] -September, 2007

NOTE: the first two and the last three refer to one and the same standard. The current standard GPA-TP15 (2007) / API MPMS 11.2.5 extends the applicable range of the previous standard GPA TP-15 (1988) / API MPMS 11.2.2 Addendum 1994 while preserving the calculations and constants of the previous standard.

Boundaries

The GPA TP-15:1988 / API MPMS 11.2.2 Addendum:1994 correlation method is valid for the following range.

- 0.490 to 0.676 (RD60)
- -50 to 140 °F

The GPA TP-15:2007 / API MPMS 11.2.5:2007 correlation method has been extended for lower density and is valid for the following ranges.

Lower range:

- 0.350 to 0.425 (RD60)
- -50 to (695.51*RD60 155.51) °F with RD60 being the relative density at 60°F

Higher range:

- 0.425 to 0.676 (relative density)
- -50 to 140 °F

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Relative density at 60°F		-	0.3 0.75	0
Observed Temperature		°F	-100200	60
API rounding	0: Disabled	-		0
-	Full precision (no rounding applied)			
	1: Enabled			
	Rounding as defined in ' GPA TP15:1988 / API MPMS 11.2.2 Addendum':1994			
P100 Correlation	0: Disabled	-		0
	The standard correlation is commonly used for pure products such as propane, butane			
	and natural gasoline. It only requires the relative density and the temperature to			
	calculate the vapor pressure			
	1: Enabled			
	The improved correlation requires the vapor pressure at 100°F (37.8 °C). This method is			
	better suited for varied NGL mixes Where different product mixes could have the same			
	specific gravity but different equilibrium pressures.			
Vapor pressure at 100°F		psia	0500	0
Function outputs	Remark		EU	Fallback
Status	0: Normal			
	1: Input argument out of range			
	2: Calculation error			
Vapor pressure	Vapor pressure at 60°F		psia	0
vapoi pressure	vapor pressure at oo r		p 5.04	•

Calculations

The calculations are in either full or partial compliance with the standards, depending on the selected type of API rounding.

0: In Range 1: Out of Range

fxGPA2172_96_C

This uses the procedure for calculating heating value, specific gravity and compressibility factor at **customary** (imperial) conditions from the compositional analysis of a natural gas mixture.

GPA2172 describes the calculation methods to determine the compositional properties based on the individual component values and it refers to the GPA Standard 2145 (GPA2145) standard for these individual component values.

The effect of water on the calculations is rather complicated and is accounted for with a simplified equation that is considered to be adequate for custody transfer applications.

Therefore compositional properties are calculated for the following gas compositions:

- Wet gas composition the water fraction of input "Composition' is taken as the actual water fraction.
- Dry gas composition the water fraction is set to 0 and the composition is normalized to unity.
- Saturated gas composition the water fraction is set to the value when the gas is saturated with water and the composition is normalized to unity

GPA-2172 prescribes that the most recent edition of GPA2145 used for the individual component values. The function provides the option to use the values from editions 2000 and 2003. In order to verify the function based on the examples of GPA2172 the function provides the option to GPA2145-89 (edition 1989) as well.

Compliance

- GPA Standard 2172-96, Calculation of Gross Heating Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis - 1996
- API MPMS 14.5
- ASTM D3588-98 (Reapproved 2003)
- GPA Standard 2145-89, Table of Physical Constants
- GPA Standard 2145-00, Table of Physical Constants
- GPA Standard 2145-03, Table of Physical Constants

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Composition	Standard composition as defined section 'Standard Gas Composition'	mol/mol	COMP	01	0
Edition	Refers to the base conditions and the editions of the GPA2145 values.	-	EDITION		2
	Note that these base conditions are used for both the density and the heating				
	value.				
	1: 60°F, 14.696 psia, GPA2145-89 (1989)				
	2: 60°F, 14.696 psia, GPA2145-00 (2000)				
	3: 60°F, 14.696 psia, GPA2145-03 (2003)				
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero	-	NEOC5_MODE		1
	1: Add to i-Pentane		_		
	2: Add to n-Pentane				
	3: Neglect				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: Composition error			COMPERR	
	Composition does not add up to 100% +- 0.01%				
	In case of an error the output values will be set to the fallback values				
Gross Heating Value (Wet)		Btu/ft3	VOLGHV_WET		0
Molar Mass (Wet)		lbm/lbmol	MOLMASS_WET		0
Molar Mass Ratio (Wet)			ISG_WET		0
Relative Density (Wet)	Based on the compressibility of <u>wet</u> air	-	RRD_WET		0
Compressibility (Wet)		-	Z_DWET		0
Gross Heating Value (Wet)		Btu/lbm	MASGHV_WET		0
Net Heating Value (Wet)		Btu/ft3	VOLNHV_WET		0
Gross Heating Value (Dry)		Btu/ft3	VOLGHV_DRY		0
Molar Mass (Dry)		-	MOLMASS_DRY		0
Molar Mass Ratio (Dry)		lbm/lbmol	ISG_DRY		0
Relative Density (Dry)			RRD_DRY		0
Compressibility (Dry)		-	Z_DRY		0
Gross Heating Value (Dry)		Btu/lbm	MASGHV_DRY		0
Net Heating Value (Dry)		Btu/ft3	VOLNHV_DRY		0
Gross Heating Value	The saturated Gross Heating Value is commonly used for custody	Btu/ft3	VOLGHV_SAT		0
(Saturated)	transfer energy calculations		_		
Molar Mass (Saturated)		lbm/lbmol	MOLMASS SAT		0

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Molar Mass Ratio (Saturated)	Ideal specific gravity	-	ISG_SAT		0
Relative Density (Saturated)	Based on the compressibility of saturated air	-	RRD_SAT		0
Compressibility (Saturated)		-	Z_SAT		0
Gross Heating Value		Btu/lbm	MASGHV_SAT		0
(Saturated)					
Net Heating Value (Saturated)		Btu/ft3	VOLNHV_SAT		0

Calculations

The calculations are as documented in the GPA-2172 standard using the GPA2145 table values. However the calculations are performed at full precision, so not with intermediate rounding as shown in the examples of the standard.

Please note that the function uses the input composition 'as is', so does <u>not</u> apply normalization to 1.

- When the water fraction input value is above the water fraction of the saturated gas then the function continues its calculations without any correction.
- GPA-2145 standard editions 2000 and 2003 do not specify properties for hydrogen, argon and carbon monoxide. The function processes these components like the other components but with all property values set to 0.

fxGPA2172_96_M

This function uses the procedure for calculating heating value, specific gravity and compressibility factor at **metric** conditions from the compositional analysis of a natural gas mixture. GPA2172 describes the calculation methods to determine the compositional properties based on the individual component values and it refers to the GPA Standard 2145 (GPA2145) standard for these individual component values.

The effect of water on the calculations is rather complicated and is accounted for with a simplified equation that is considered to be adequate for custody transfer applications.

Therefore compositional properties are calculated for the following gas compositions:

- Wet gas composition the water fraction of input "Composition' is taken as the actual water fraction.
 Dry gas composition
- the water mole fraction of input "Composition' is set to 0 and the composition is normalized to unity.

- Saturated gas composition
 - the water fraction value of input "Composition' is set to the water saturated mole fraction and the composition is normalized to unity

GPA-2172 prescribes that the most recent edition of GPA2145 used for the individual component values. The function provides the option to use the values from GPA2145 edition 2000 or 2003.

Compliance

- GPA Standard 2172-96, Calculation of Gross Heating Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis - 1996
- API MPMS 14.5 (same as GPA2172-96)
- GPA Standard 2145-00, Table of Physical Constants
- GPA Standard 2145-03, Table of Physical Constants

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Composition	Standard composition as defined section 'Standard Gas Composition'.	mol/mol	COMP	01	0
Edition	Refers to the base conditions and the editions of the GPA2145 values.	-	EDITION		2
	Note that the same temperature value is used for the density and heating value. 1: 15°C, 1.01325 bar(a), GPA2145-00 2: 15°C, 1.01325 bar(a), GPA2145-03				-
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane 2: Add to n-Pentane 3: Neglect	-	NEOC5_MODE		1

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: Composition error			COMPERR	
	Composition does not add up to 100% +- 0.01%				
	In case of an error the output values will be set to the fallback				
	values				
Gross Heating Value (Wet)		MJ/m3	VOLGHV_WET		0
Molar Mass (Wet)		kg/kmol	MOLMASS_WET		0
Molar Mass Ratio (Wet)		-	ISG_WET		0
Relative Density (Wet)	Based on the compressibility of wet air	-	RRD_WET		0
Compressibility (Wet)		-	Z_DWET		0
Gross Heating Value (Wet)		MJ/kg	MASGHV_WET		0
Net Heating Value (Wet)		MJ/m3	VOLNHV_WET		0
Gross Heating Value (Dry)		MJ/m3	VOLGHV_DRY		0
Molar Mass (Dry)		kg/kmol	MOLMASS_DRY		0
Molar Mass Ratio (Dry)		-	ISG_DRY		0
Relative Density (Dry)		-	RRD_DRY		0
Compressibility (Dry)		-	Z_DRY		0
Gross Heating Value (Dry)		MJ/kg	MASGHV_DRY		0
Net Heating Value (Dry)		MJ/m3	VOLNHV_DRY		0
Gross Heating Value (Saturated)	The saturated Gross Heating Value is commonly used for	MJ/m3	VOLGHV_SAT		0
	custody transfer energy calculations				
Molar Mass (Saturated)		kg/kmol	MOLMASS_SAT		0
Molar Mass Ratio (Saturated)	Ideal specific gravity	-	ISG_SAT		0
Relative Density (Saturated)	Based on the compressibility of saturated air	-	RRD_SAT		0
Compressibility (Saturated)		-	Z_SAT		0
Gross Heating Value (Saturated)		MJ/kg	MASGHV_SAT		0
Net Heating Value (Saturated)		MJ/m3	VOLNHV SAT		0

Calculations

The calculations are as documented in the GPA-2172 standard using the GPA2145 table values. However the calculations are performed at full precision, so not with intermediate rounding as shown in the examples of the standard.

Please note that the function uses the input composition 'as is', so does <u>not</u> apply normalization to 1.

- When the water fraction input value is above the water fraction of the saturated gas then the function continues its calculations without any correction.
- GPA-2145 standard editions 2000 and 2003 do not specify properties for hydrogen, argon and carbon monoxide. The function processes these components like the other components but with all property values set to 0.

fxGPA2172_09_C

This function calculates the heating value, specific gravity and compressibility factor at **customary** (imperial) conditions from the compositional analysis of a natural gas mixture in accordance with GPA2172-09.

This function does <u>not</u> support the theoretical hydrocarbon liquid content calculation that has been added to GPA-2172 2009 revision.

GPA2172 describes the calculation methods to determine the compositional properties based on the individual component values and it refers to the GPA Standard 2145 (GPA2145) standard for these individual component values.

The effect of water on the calculations is rather complicated and is accounted for with a simplified equation that is considered to be adequate for custody transfer applications.

Therefore compositional properties are calculated for the following gas compositions:

- Wet gas composition the water fraction of input "Composition' is taken as the actual water fraction.
- Dry gas composition the water fraction is set to 0 and the composition is normalized to unity.
- Saturated gas composition the water fraction is set to the value when the gas is saturated with water and the composition is normalized to unity

GPA-2172 prescribes that the most recent edition of GPA2145 used for the individual component values. The function provides the option to use the values from edition 2009.

Compliance

- GPA Standard 2172-09, Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures from Compositional Analysis - 2009
- API MPMS 14.5
- GPA Standard 2145-09, Table of Physical Constants

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Composition	Standard composition as defined section 'Standard Gas Composition'	mol/mol	COMP	01	0
Edition	Refers to the base conditions and the editions of the GPA2145 values.	-	EDITION		2
	Note that these base conditions are used for both the density and the				
	heating value.				
	4: 60°F, 14.696 psia, GPA2145-09 (2009)				
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero	-	NEOC5_MODE		1
	1: Add to i-Pentane				
	2: Add to n-Pentane				
	3: Neglect				
F	Remark			A 1	Fallback
Function outputs		EU	SW tag	Alarm	Failback
Status	0: Normal 1: Input argument out of range	-	STS	FIOOR	
	2: Calculation error			CALCERR	
	3: Composition error			COMPERR	
	Composition does not add up to 100% +- 0.01%			COMPERK	
	In case of an error the output values will be set to the fallback				
	values				
Gross Heating Value (V	/et)	Btu/ft3	VOLGHV_WET		0
Molar Mass (Wet)		lbm/lbmol	MOLMASS_WET		0
Molar Mass Ratio (Wet)			ISG_WET		0
Relative Density (Wet)	Based on the compressibility of <u>wet</u> air	-	RRD_WET		0
Compressibility (Wet)		-	Z_DWET		0
Gross Heating Value (V	/et)	Btu/lbm	MASGHV_WET		0
Net Heating Value (We	c)	Btu/ft3	VOLNHV_WET		0
Gross Heating Value (D	ry)	Btu/ft3	VOLGHV_DRY		0
Molar Mass (Dry)		-	MOLMASS_DRY		0
Molar Mass Ratio (Dry)		lbm/lbmol	ISG_DRY		0
Relative Density (Dry)			RRD_DRY		0
Compressibility (Dry)		-	Z_DRY		0
Gross Heating Value (D	ry)	Btu/lbm	MASGHV_DRY		0
Net Heating Value (Dry)	Btu/ft3	VOLNHV_DRY		0
Gross Heating Value (S	aturated) The saturated Gross Heating Value is commonly used for custody transfer energy calculations	Btu/ft3	VOLGHV_SAT		0
Molar Mass (Saturated		lbm/lbmol	MOLMASS_SAT		0
Molar Mass Ratio (Satu	rated) Ideal specific gravity	-	ISG_SAT		0
Relative Density (Satur	ated) Based on the compressibility of <u>saturated</u> air	-	RRD_SAT		0
Compressibility (Satur	ated)	-	Z_SAT		0
Gross Heating Value (S		Btu/lbm	MASGHV_SAT		0
Net Heating Value (Sat	urated)	Btu/ft3	VOLNHV SAT		0

Calculations

The calculations are as documented in the GPA-2172 standard using the GPA2145 table values. However the calculations are performed at full precision, so not with intermediate rounding as shown in the examples of the standard.

Please note that the function uses the input composition 'as is', so does <u>not</u> apply normalization to 1.

- When the water fraction input value is above the water fraction of the saturated gas then the function continues its calculations without any correction.
- GPA-2145 standard edition 2009 does not specify properties for hydrogen, argon and carbon monoxide. The function processes these components like the other components but with all property values set to 0.

fxGPA2172_09_M

This function calculates the heating value, specific gravity and compressibility factor at **metric** (imperial) conditions from the compositional analysis of a natural gas mixture in accordance with GPA2172-09.

This function does <u>not</u> support the theoretical hydrocarbon liquid content calculation that has been added to GPA-2172 2009 revision.

GPA2172 describes the calculation methods to determine the compositional properties based on the individual component values and it refers to the GPA Standard 2145 (GPA2145) standard for these individual component values.

The effect of water on the calculations is rather complicated and is accounted for with a simplified equation that is considered to be adequate for custody transfer applications.

Therefore compositional properties are calculated for the following gas compositions:

- Wet gas composition the water fraction of input "Composition' is taken as the actual water fraction.
- Dry gas composition the water fraction is set to 0 and the composition is normalized to unity.
- Saturated gas composition the water fraction is set to the value when the gas is saturated with water and the composition is normalized to unity

GPA-2172 prescribes that the most recent edition of GPA2145 used for the individual component values. The function provides the option to use the values from edition 2009.

Compliance

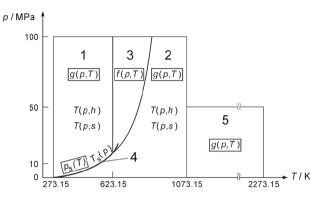
- GPA Standard 2172-09, Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures from Compositional Analysis - 2009
- API MPMS 14.5
- GPA Standard 2145-09, Table of Physical Constants

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				-
Composition	Standard composition as defined section 'Standard Gas Composition'	mol/mol	СОМР	01	0
Edition	Refers to the base conditions and the editions of the GPA2145 values. Note that these base conditions are used for both the density and the heating value.	-	EDITION		2
	3: 15°C, 1.01325 bar(a), GPA2145-09				
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero 1: Add to i-Pentane	-	NEOC5_MODE		1
	2: Add to n-Pentane				
	3: Neglect				
Function outputs	Remark	J S\	V taq	Alarm	Fallbac

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: Composition error			COMPERR	
	Composition does not add up to 100% +- 0.01%				
	In case of an error the output values will be set to the fallback				
	values				
Gross Heating Value (Wet)		MJ/m3	VOLGHV_WET		0
Molar Mass (Wet)		kg/kmol	MOLMASS_WET		0
Molar Mass Ratio (Wet)		-	ISG_WET		0
Relative Density (Wet)	Based on the compressibility of wet air	-	RRD_WET		0
Compressibility (Wet)		-	Z_DWET		0
Gross Heating Value (Wet)		MJ/kg	MASGHV_WET		0
Net Heating Value (Wet)		MJ/m3	VOLNHV_WET		0
Gross Heating Value (Dry)		MJ/m3	VOLGHV_DRY		0
Molar Mass (Dry)		kg/kmol	MOLMASS_DRY		0
Molar Mass Ratio (Dry)		-	ISG_DRY		0
Relative Density (Dry)		-	RRD_DRY		0
Compressibility (Dry)		-	Z_DRY		0
Gross Heating Value (Dry)		MJ/kg	MASGHV_DRY		0
Net Heating Value (Dry)		MJ/m3	VOLNHV_DRY		0
Gross Heating Value (Saturated)	The saturated Gross Heating Value is commonly used for	MJ/m3	VOLGHV_SAT		0
	custody transfer energy calculations				
Molar Mass (Saturated)		kg/kmol	MOLMASS_SAT		0
Molar Mass Ratio (Saturated)	Ideal specific gravity	-	ISG_SAT		0
Relative Density (Saturated)	Based on the compressibility of saturated air	-	RRD_SAT		0
Compressibility (Saturated)		-	Z_SAT		0
Gross Heating Value (Saturated)		MJ/kg	MASGHV_SAT		0
Net Heating Value (Saturated)		MJ/m3	VOLNHV_SAT		0

Calculations

The calculations are as documented in the GPA-2172 standard using the GPA2145 table values. However the calculations are performed at full precision, so not with intermediate rounding as shown in the examples of the standard.


Please note that the function uses the input composition 'as is', so does <u>not</u> apply normalization to 1.

- When the water fraction input value is above the water fraction of the saturated gas then the function continues its calculations without any correction.
- GPA-2145 standard edition 2009 does not specify properties for hydrogen, argon and carbon monoxide. The function processes these components like the other components but with all property values set to 0

fxIAPWS_IF97_C

The function calculates the density and enthalpy of steam and water according to AIPWS-IF97 in **US Customary units**.

IAPWS-IF97 defines calculations for 5 regions as shown in the picture below.

Region 1: Water

Region 2: Superheated steam Region 3: Water Region 4: Saturation line (saturated steam / water) Region 5: Superheated steam

References

• Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, August 2007.

Boundaries

The IAPWS Industrial Formulation 1997 consists of a set of equations for different regions which cover the following range of validity:

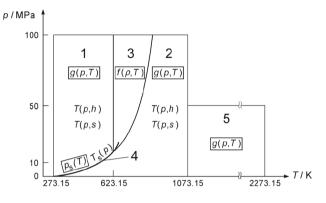
- 32 ≤ T ≤ 1472 °F p ≤ 14500 psia
 - 1472 ≤ T ≤ 3632 °F p ≤ 725
- p ≤ 7250 psia

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Temperature		°F	04000	0
Pressure		psia	015000	0
Phase	The phase (water or steam) can be calculated automatically or be set to either steam or water. 1: Auto-select (calculate from t and p inputs) 2: Steam 3: Water If 'Steam' or 'Water' is selected, while the combination of temperature and pressure indicates the opposite phase, then the function uses either the saturation pressure (region 4) or the boundary pressure (intersection regions 2 and 3) instead of the input pressure for its calculations.			1

Function outputs	Remark	EU	Fallback
Status	0: Normal		
	1: Input argument out of range		
	2: Calculation error		
	3: No convergence		
Density		lbm/ft3	0
Enthalpy	Energy flow = Mass flow * Enthalpy	btu/lbm	0
Region	Actual IAPWS-IF97 region	-	0
	0: Combination of t and p is outside the valid range		
	1: Water		
	2: Steam		
	3: Pressurized water		
	4: At the saturation line		
	5: High temperature steam (1472 ≤ T ≤ 3632 °F)		
Saturation pressure	Saturation pressure at the input temperature.	psia	0
	Note: only calculated up to the critical temperature of 647.096 K (+- 705 °F), set to 0 for higher temperatures		
Ratio of specific heats	Equals the ratio of the specific heats cp / cv	-	0
	cp : specific heat at constant pressure		
	cv : specific heat at constant volume		
	This ratio can be used as the isentropic exponent value (also called 'kappa') when the real value is unknown.		
	The isentropic exponent is required for flow rate calculations based on a differential pressure measurement		
	(e.g. orifice)		

Calculations

The calculations are in compliance with the standard.


For regions 1, 2 and 5 the density can be calculated directly from the temperature in pressure. For region 3 an iterative calculation is required because the Equation Of State for this region calculates the pressure from a known temperature and density iteration. A convergence limit of 0.00001 kg/m3 (+- 0.000006 lbm/ft3) is applied. A maximum of 20 iterations is applied.

The other properties can be calculated directly from the temperature and pressure for all regions.

fxIAPWS_IF97_M

The function calculates the density and enthalpy of steam and water according to AIPWS-IF97 in **Metric units**.

IAPWS-IF97 defines calculations for 5 regions as shown in the picture below.

Region 1: Water Region 2: Superheated steam Region 3: Water Region 4: Saturation line (saturated steam / water) Region 5: Superheated steam

References

• Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, August 2007.

Boundaries

The IAPWS Industrial Formulation 1997 consists of a set of equations for different regions which cover the following range of validity:

• 0 ≤ T ≤ 800 °C p ≤ 1000 bar(a)

800 ≤ T ≤ 2000 °C p ≤ 500 bar(a)

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Temperature		°C	-50 2200	0
Pressure		bar(a)	01100	0
Phase	The phase (water or steam) can be calculated automatically or be set to either steam or water.			1
	1: Auto-select (calculate from t and p inputs)			
	2: Steam			
	3: Water			
	If 'Steam' or 'Water' is selected, while the combination of temperature and pressure indicates the			
	opposite phase, then the function uses either the saturation pressure (region 4) or the boundary			
	pressure (intersection regions 2 and 3) instead of the input pressure for its calculations.			

Function outputs	Remark	EU	Fallback
Status	0: Normal		
	1: Input argument out of range		
	2: Calculation error		
	3: No convergence		
Density		kg/m3	0
Enthalpy	Energy flow = Mass flow * Enthalpy	MJ/kg	0
Region	Actual IAPWS-IF97 region	-	0
-	0: Combination of t and p is outside the valid range		
	1: Water		
	2: Steam		
	3: Pressurized water		
	4: At the saturation line		
	5: High temperature steam (800 ≤ T ≤ 2000 °C)		
Saturation pressure	Saturation pressure at the input temperature	bar(a)	0
	Note: only calculated up to the critical temperature of 647.096 K (+- 374 °C), set to 0 for higher temperatures		
Ratio of specific heats	Equals the ratio of the specific heats cp / cv	-	0
	cp : specific heat at constant pressure		
	cv : specific heat at constant volume		
	This ratio can be used as the isentropic exponent value (also called 'kappa') when the real value is unknown.		
	The isentropic exponent is required for flow rate calculations based on a differential pressure measurement		
	(e.g. orifice)		

Calculations

The calculations are in compliance with the standard.

For regions 1, 2 and 5 the density can be calculated directly from the temperature in pressure. For region 3 an iterative calculation is required because the Equation Of State for this region calculates the pressure from a known temperature and density iteration. A convergence limit of 0.00001 kg/m3 is applied. A maximum of 20 iterations is applied.

The enthalpy can be calculated directly from the temperature and pressure for all regions.

fxIndex

The 'fxIndex' provides the same functionality as the Excel Index function with the addition of the creation of tag names. A spreadsheet cell that contains a 'fxIndex' function obtains the tag name as defined by its 'Name' input with the tag inheriting all properties including the value and units from the referred tag. When the referred cell contains a writable tag (i.e. a value and no function) than the cell with the 'fxIndex' function also represents a writable tag with the same properties.

When the referred cell contains a tag that represents one or more alarms, then the same alarms are created for the cell with the 'fxIndex' function.

The 'fxIndex' is especially useful for setting up generic (template) applications as illustrated by the following examples:

- For each of the 6 analog inputs the application contains one 'Analog input' function that generates tag names with prefix, "AIN1_", "AIN2_ etc. Also more meaningful tag names such as "..PT" (pressure transmitter), ".._TT" are used in the application. When changing the high alarm limit for the pressure transmitter (e.g. through an OPC interface) it makes more sense to address the tag as "..PT_HISCALE" instead of "..AIN3_HISCALE" (assuming AIN 3 being used for the pressure transmitter). This can be achieved by using the 'fxIndex' function for the cell that represents the '..PT_HISCALE' tag.
- In some cases one and the same input signal is used for multiple process variables that are defined in the generic application. E.g. when the generic application assumes a prover inlet temperature input signal as well as a prover outlet temperature signal (and has corresponding tag names), while there is only a temperature transmitter in the prover loop, then the input tags of both signals can refer to the same "AIN" signal by using the 'fxIndex' function.

Function inputs	Remark		EU SW tag	Range	Default
Name	Tag name for the cell that contains the function				
Reference	Reference to one or more cell ranges				1
Row number	Optional				1
	Number of the row in reference from which to return a reference				
Column number	Optional.				1
	Number of the column in reference from which to return a reference				
Area number	Optional				1
	Selects a range in reference from which to return the intersection of 'Row number'	and			
	'Column number'. The first area selected or entered is numbered 1, the second is 2	and so on.			
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Value	The cell obtains a tag name that consist of the prefix as defined by input 'Name'	Same as	See Remark		
	with the addition of the suffix as was generated for the tag that is being referred	referred cell			
	to.				
	The same applies for an alarm if one has been defined for the referred tag.				

fxInterpolationCurve

This function calculates the output value from a set of reference points and the actual input value. The function can take an arbitrary number of reference points.

The function is typically used for applying a calibration curve to a K factor or a meter factor (liquid) or a meter error curve (gas). Besides of the 1st calibration point (which is always used) the function will only use the calibration points (starting from the 2nd point) for which the x value is greater than the previous x value. All further points will be ignored.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input value	Reference to the cell containing the actual input value (e.g. flow rate or pulse frequency)				
Reference values	Array of reference values, assuming the following sequence:		REFVAL		
	Point 1 - Input value				
	Point 1 - Output value				
	Point 2 - Input value				
	Point 2 - Output value				
	etc				
	The array must contain an even number of values with the input values in ascending				
	order.				
	So it is required that Input 1 < Input 2 < Input 3 etc.				
	However, when an input value equals 0, then the function will not use this point and all				
	subsequent points of the array.				
Extrapolation mode	Determines whether or not extrapolation must be applied when the input value is		EXPMODE		
	outside the linearization curve. When disabled either the first or last output value will be				
	used.				
	0: Disabled				
	1: Enabled				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Output value	Interpolated value	Same as input 'Output reference 1'	VAL		0
Date/time	Latest modification date and time of the any of the		DTTM		
	reference point values				
Out of range	Input value is outside the range that is covered by the			OOR	
-	reference values				

Calculations

$$y = (x - In_L) \cdot \frac{Out_H - Out_L}{In_H - In_L} + Out_L$$

Where:

x	Input value
у	Interpolated value
ln∟	Closest input reference value that is smaller than the input value
In _H	Closest input reference value that is larger than the input value
Out∟	Output reference value that corresponds with InL
Out _H	Output reference value that corresponds with In_H

fxISO5167_ISA1932Nozzle

The function calculates the mass flow rate for **ISA1932 Nozzle** pressure differential flow devices according to the ISO-5167 standard.

Compliance

- ISO-5167 1991 Measurement of fluid flow by means of pressure differential devices, 1st edition, 1991
- ISO-5167 Amd.1 : 1998(E)
- ISO-5167 2003 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full, 2nd edition, 2003

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Differential Pressure	Differential pressure over the primary flow device measured at the up- and downstream pressure tappings, which need to be in the positions as specified in the standard	mbar		0
Pressure	Upstream pressure value of the fluid at metering conditions	bar(a)		0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°C		0
Density	Down or upstream density of the fluid at metering conditions	kg/m3		0
Dynamic Viscosity	Dynamic viscosity of the fluid	Pa.s		0
Isentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the	. 4.5		0
	specific heat capacity at constant pressure to the specific heat at constant volume. According to the ISO standard this ratio may be used, when the real value is unknown.			0
Pipe Diameter	Internal diameter of the pipe at reference temperature	mm		0
•	The thermal expansion coefficient of the pipe material	1/°C		0.0000108
Pipe Expansion factor	The reference temperature that corresponds to the 'Pipe diameter' input value	°C		
Pipe Reference temperature				20
ISA1932 Nozzle Diameter	ISA1932 Nozzle diameter at reference temperature	mm		0
ISA1932 Nozzle Expansion factor	The thermal expansion coefficient of the ISA1932 Nozzle material	1/°C		0.0000163
ISA1932 Nozzle Reference Temperature	The reference temperature that corresponds to the 'ISA1932 Nozzle diameter' input value	°C		20
Pressure Location	1: Upstream	-		1
	Input 'Pressure' represents the pressure at the upstream pressure tapping (p ₁). Since the absolute pressure is usually measured at the upstream tapping this is the most common setting. 2: Downstream			
	Input 'Pressure' represents the pressure at the downstream tapping (p_2).			
Temperature Location	1: Upstream	-		2
	Input 'Temperature' represents the upstream temperature (t_1) . 2: Downstream			-
	Input 'Temperature represents the temperature at the downstream tapping (t_2) . 3: Recovered			
	Input 'Temperature' represents the downstream temperature at a location Where the pressure has fully recovered (t_3).			
	Since temperature measurement is usually downstream of the flow device this is the most common setting.			
Temperature Correction	This parameter specifies how the temperature should be corrected from downstream to upstream conditions (or vice versa) 1: $(1-\kappa)/\kappa$			3
	Isentropic expansion using $(1-\kappa)/\kappa$ as the temperature referral exponent 2: Constant			
	Isentropic expansion using input 'Temperature Exponent' as the temperature referral exponent [-].			
	Please note that this value must be < 0			
	3: Joule Thomson Isenthalpic expansion using input 'Temperature Exponent' as the Joule Thomson coefficient			
	[°C/bar].			
	This method is prescribed by ISO5167-1:2003.			
Temperature Exponent	Refer to input Temperature Correction	-		0
	Unit depends on input Temperature Correction value	-°C/bar		
Density Location	This parameter specifies if and how the density should be corrected from downstream to	-		1
	upstream conditions (or vice versa).			
	1: Upstream			
	Input 'Density' represents the density at the upstream pressure tapping ($ ho_1$).			
	2: Downstream			
	Input 'Density' represents the density at the downstream tapping (ρ_2).			
	3: Recovered			
	Input 'Density' represents the density downstream at a location Where the pressure has fully			
	recovered (ρ ₃).			
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be used when the input value is set to 0, else the input value will be used.	-		0
Fluid	For more details refer to section 'Density correction'.			1
Fluid	The type of fluid being measured 1: Gas 2: Liquid	-		T

Function inputs	Remark EU Range	Default
Year Of Edition	1: Edition 1991 -	3
	2: Edition 1998	
	3: Edition 2003	
	Only used for calculation of pressure loss, with options 1 and 2 giving the same result	
Function outputs	Remark	EU
Status	0: Normal (No error condition)	-
	1: Input argument out of range	
	2: No convergence	
Mass flow rate	The calculated mass flow rate	kg/s
Beta ratio	Nozzle to pipe ratio at upstream temperature	-
Nozzle diameter	At the upstream temperature	mm
Pipe diameter	At the upstream temperature	mm
Upstream pressure	Pressure at upstream tapping (p_1)	bar(a)
Pressure at downstream tapping	g Pressure at downstream tapping (p2)	bar(a)
Recovered downstream pressure	e Fully recovered downstream pressure (p3)	bar(a)
Upstream temperature	Temperature at upstream tapping (t _i)	°C
Temperature at downstream tap	pping Temperature at downstream tapping (tz)	°C
Downstream Temperature	'Fully recovered' downstream temperature (t ₃)	°C
Upstream density	Density at upstream tapping (ρ_1)	kg/m3
Density at downstream tapping	Pressure at downstream tapping (ρ_2)	kg/m3
Downstream density	'Fully recovered' downstream density (ρ ₃)	kg/m3
Reynolds number	The pipe Reynolds number (this is the Reynolds number upstream of the ISA1932 Nozzle and not the one	-
	within the device throat itself	
Discharge coefficient		-
Expansion Factor		-
Velocity of Approach		
Pressure Range	0: Pressure is in valid range	-
	1: Pressure is out of valid range	
Reynolds Range	0: Reynolds number is in valid range	-
	1: Reynolds number is out of valid range	
Diameter Range	0: Device and pipe diameter and Beta ratio in valid range	-
	1: Device diameter, pipe diameter and/or Beta ratio out of valid range	

fxISO5167_LongRadiusNozzle

The function calculates the mass flow rate for **Long Radius Nozzle** pressure differential flow devices according to the ISO-5167 standard.

Compliance

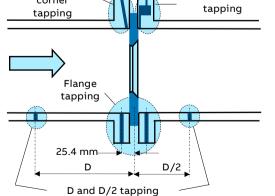
- ISO-5167 1991 Measurement of fluid flow by means of pressure differential devices, 1st edition, 1991
- ISO-5167 Amd.1 : 1998(E)
- ISO-5167 2003 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full, 2nd edition, 2003

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Differential Pressure	Differential pressure over the primary flow device measured at the up- and downstream pressure tappings, which need to be in the positions as specified in the standard	mbar		0
Pressure	Upstream pressure value of the fluid at metering conditions	bar(a)		0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°C		0
· · · · · · · · · · · · · · · · · · ·	Down or upstream density of the fluid at metering conditions	-		0
Density Dynamic Viscosity		kg/m3 Pa.s		0
Dynamic Viscosity	Dynamic viscosity of the fluid	- Fa.5		0
lsentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the specific heat capacity at constant pressure to the specific heat at constant volume. According	-		0
	to the ISO standard this ratio may be used, when the real value is unknown.			
Pipe Diameter	Internal diameter of the pipe at reference temperature	mm		0
Pipe Expansion factor	The thermal expansion coefficient of the pipe material	1/°C		0.0000108
· ·		°C		
Pipe Reference temperature	The reference temperature that corresponds to the 'Pipe diameter' input value			20
Long Radius Nozzle Diameter	Long Radius Nozzle diameter at reference temperature	mm		0
Long Radius Nozzle Expansion factor	The thermal expansion coefficient of the Long Radius Nozzle material	1/°C		0.0000163
Long Radius Nozzle Reference Temperature	The reference temperature that corresponds to the 'Long Radius Nozzle diameter' input value	°C		20
Pressure Location	1: Upstream	-		1
	Input 'Pressure' represents the pressure at the upstream pressure tapping (p_1).			
	Since the absolute pressure is usually measured at the upstream tapping this is the most			
	common setting.			
	2: Downstream			
	Input 'Pressure' represents the pressure at the downstream tapping (p_2).			
Temperature Location	1: Upstream	-		2
	Input 'Temperature' represents the upstream temperature (t_1) .			
	2: Downstream			
	Input 'Temperature represents the temperature at the downstream tapping (t_2).			
	3: Recovered			
	Input 'Temperature' represents the downstream temperature at a location Where the pressure has fully recovered (t_3).			
	Since temperature measurement is usually downstream of the flow device this is the most common setting.			
Temperature Correction	This parameter specifies how the temperature should be corrected from downstream to			3
	upstream conditions (or vice versa)			
	1: (1-κ)/κ			
	Isentropic expansion using $(1-\kappa)/\kappa$ as the temperature referral exponent			
	2: Constant			
	Isentropic expansion using input 'Temperature Exponent' as the temperature referral			
	exponent [-].			
	Please note that this value must be < 0			
	3: Joule Thomson			
	Isenthalpic expansion using input 'Temperature Exponent' as the Joule Thomson coefficient			
	[°C/bar].			
	This method is prescribed by ISO5167-1:2003.			
Temperature Exponent	Refer to input Temperature Correction	-		0
	Unit depends on input Temperature Correction value	-°C/bar		
Density Location	This parameter specifies if and how the density should be corrected from downstream to	-		1
	upstream conditions (or vice versa).			
	1: Upstream			
	Input 'Density' represents the density at the upstream pressure tapping (ρ_1).			
	2: Downstream			
	Input 'Density' represents the density at the downstream tapping (ρ_2).			
	3: Recovered			
	Input 'Density' represents the density downstream at a location Where the pressure has fully			
	recovered (p3).			
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be used when the	-		0
	input value is set to 0, else the input value will be used.			5
	For more details refer to section 'Density correction'.			
	The type of fluid being measured	-		1
Fluid				

Function inputs	Remark EU Range	Default
	2: Liquid	
Year Of Edition	1: Edition 1991 -	3
	2: Edition 1998	
	3: Edition 2003	
	Only used for calculation of pressure loss, with options 1 and 2 giving the same result	
Function outputs	Remark	EU
Status	0: Normal (No error condition)	-
	1: Input argument out of range	
	2: No convergence	
Mass flow rate	The calculated mass flow rate	kg/s
Beta ratio	Nozzle to pipe ratio at upstream temperature	
Nozzle diameter	At the upstream temperature	
Pipe diameter	At the upstream temperature	
Upstream pressure	Pressure at upstream tapping (p_1)	bar(a)
Pressure at downstream tapping	Pressure at downstream tapping (p2)	bar(a)
Recovered downstream pressure	Fully recovered downstream pressure (p3)	bar(a)
Upstream temperature	Temperature at upstream tapping (ti)	°C
Temperature at downstream tap	ping Temperature at downstream tapping (t ₂)	°C
Downstream Temperature	'Fully recovered' downstream temperature (t $_3$)	°C
Upstream density	Density at upstream tapping ($ ho_1$)	kg/m3
Density at downstream tapping	Pressure at downstream tapping (ρ_2)	kg/m3
Downstream density	'Fully recovered' downstream density (ρ3)	kg/m3
Reynolds number	The pipe Reynolds number (this is the Reynolds number upstream of the Long Radius Nozzle and not the	-
	one within the device throat itself	
Discharge coefficient		-
Expansion Factor		-
Velocity of Approach		
Pressure Range	0: Pressure is in valid range	-
	1: Pressure is out of valid range	
Reynolds Range	0: Reynolds number is in valid range	-
	1: Reynolds number is out of valid range	
Diameter Range	0: Device and pipe diameter and Beta ratio in valid range	-
	1: Device diameter, pipe diameter and/or Beta ratio out of valid range	

fxISO5167_Orifice

The function calculates the mass flow rate for **Orifice** pressure differential flow devices according to the ISO-5167 standard and the ISO/TR 15377 technical report.


Orifices plates with the following type of pressure tappings are supported by this function:

- ISO5167 Square-edged orifice with corner tappings
- ISO5167 Square-edged orifice with flange tappings
- ISO5167 Square-edged orifice with D and D/2 tappings
- ISO/TR 15377 Quarter circle orifice with corner tappings
- ISO/TR 15377 Quarter circle orifice with flange tappings
- ISO/TR 15377 Conical entrance orifice with corner tappings

References

- ISO 5167 Measurement of fluid flow by means of pressure differential devices, 1991
- ISO 5167 Measurement of fluid flow by means of pressure differential devices, 1991
- Amendment 1 1998
- ISO 5167 Measurement of fluid flow by means of pressure differential devices, 2003
- British standard 1042: Part 1: 1964
- ISO/TR 15377:2007 Measurement of fluid flow by means of pressure differential devices Guidelines for the specification of orifice plates, nozzle and Venturi tubes beyond the scope of ISO 5167

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Differential Pressure	Differential pressure over the primary flow device measured at the up- and downstream	mbar	010000	0
	pressure tappings, which need to be in the positions as specified in the standard			
Pressure	Down- or upstream pressure value (p1) of the fluid at metering conditions	bar (a)	02000	0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°C	-2401000	0
Density	Down or upstream density of the fluid at metering conditions	kg/m3	02000	0
Dynamic Viscosity	Dynamic viscosity of the fluid	Pa.s	01	0
Isentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the	-	010	0
	specific heat capacity at constant pressure to the specific heat at constant volume.			
	According to the ISO standard this ratio may be used, when the real value is unknown.			
Pipe Diameter	Internal diameter of the pipe at reference temperature	mm	02000	0
Pipe Expansion factor	The thermal expansion coefficient of the pipe material	1/°C	01	0.0000108
Pipe Reference	The reference temperature that corresponds to the 'Pipe diameter' input value	°C	-3001000	20
temperature				
Orifice Diameter	Orifice diameter at reference temperature	mm	02000	0
Orifice Expansion factor	The thermal expansion coefficient of the orifice material	1/°C	01	0.0000163
Orifice Reference	The reference temperature that corresponds to the 'Orifice diameter' input value	°C	-3001000	20
Temperature				
Configuration	The location of the pressure tappings. Several configurations are permitted by the ISO5167	-		2
	standard. Each configuration has a different calculation of the discharge coefficient and of			
	the expansion factor			
	1: ISO5167 Corner			
	2: ISO5167 D and D/2			
	3: ISO5167 Flange			
	4: ISO15377 Quarter circle (*)			
	5: ISO15377 Conical entrance			
	(*) The calculation of the discharge and expansion factor are equal for the quarter circle			
	orifice with corner and flange tappings.			
	Single			
	corner			
	tapping			
	tapping			

Pressure Location

cation	1: Upstream -	1
	Input 'Pressure' represents the pressure at the upstream pressure tapping (p1).	
	Since the absolute pressure is usually measured at the upstream tapping this is the most	
	common setting.	
	2: Downstream	
	Input 'Pressure' represents the pressure at the downstream tapping (p_2).	

		ange	Default
emperature Location	1: Upstream -		2
	Input 'Temperature' represents the upstream temperature (t_1). 2: Downstream		
	Input 'Temperature represents the temperature at the downstream tapping (t_2).		
	3: Recovered		
	Input 'Temperature' represents the downstream temperature at a location Where the		
	pressure has fully recovered (t3).		
	Since temperature measurement is usually downstream of the flow device this is the most		
	common setting.		
emperature Correction	This parameter specifies how the temperature should be corrected from downstream to		3
	upstream conditions (or vice versa) 1: (1-κ)/κ		
	Isentropic expansion using $(1-\kappa)/\kappa$ as the temperature referral exponent		
	2: Constant		
	Isentropic expansion using input 'Temperature Exponent' as the temperature referral		
	exponent [-].		
	Please note that this value must be < 0		
	3: Joule Thomson		
	Isenthalpic expansion using input 'Temperature Exponent' as the Joule Thomson coefficient		
	[°C/bar]. This method is prescribed by ISO5167-1:2003.		
emperature Exponent	Refer to input Temperature Correction -		0
	Unit depends on input Temperature Correction value -°C/bar		Ū
ensity Location	This parameter specifies if and how the density should be corrected from downstream to		1
	upstream conditions (or vice versa).		
	1: Upstream		
	Input 'Density' represents the density at the upstream pressure tapping ($ ho_1$).		
	2: Downstream		
	Input 'Density' represents the density at the downstream tapping (ρ_2).		
	3: Recovered		
	Input 'Density' represents the density downstream at a location Where the pressure has fully recovered (ρ_3).		
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be used when - the input value is set to 0, else the input value will be used.		0
	For more details refer to section 'Density correction'.		
luid	The type of fluid being measured -		1
	1: Gas		
	2: Liquid		
ear Of Edition	1: Edition 1991 -		3
	2: Edition 1998		
	3: Edition 2003		
Prain hole	Note: Only applicable for ISO5167. ISO/TR15377 refers to ISO5167:2003. When input value is > 0 then an additional correction on the orifice diameter will be applied mm		0
frain noie	When input value is > 0 then an additional correction on the orifice diameter will be applied mm to account for the drain hole, as explained further on.		0
	Demostr	E ''	F _10 1
	Remark 0: Normal (No error condition)	EU	Fallbac
		EU	Fallbac
	0: Normal (No error condition)	EU	Fallbac
tatus	0: Normal (No error condition) 1: Input argument out of range	EU kg/s	Fallbac
tatus lass flow rate	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature		
tatus lass flow rate eta ratio rifice diameter	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole	kg/s - mm	0 0 0
tatus lass flow rate eta ratio vrifice diameter ipe diameter	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature	kg/s - mm mm	0 0 0 0
tatus lass flow rate eta ratio vrifice diameter ipe diameter lpstream pressure	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1)	kg/s - mm mm bar(a)	0 0 0 0 0
tatus Iass flow rate eta ratio Irifice diameter ipe diameter Ipstream pressure ressure at downstream ta	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2)	kg/s - mm mm bar(a) bar(a)	0 0 0 0 0 0
tatus lass flow rate eta ratio irifice diameter ipe diameter pstream pressure ressure at downstream ta ecovered downstream pr	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p ₁) apping Pressure at downstream tapping (p ₂) essure Fully recovered downstream pressure (p ₃)	kg/s - mm bar(a) bar(a) bar(a)	0 0 0 0 0 0 0
tatus lass flow rate eta ratio irifice diameter ipe diameter pstream pressure ressure at downstream ta ecovered downstream pr pstream temperature	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p ₁) apping Pressure at downstream tapping (p ₂) essure Fully recovered downstream pressure (p ₃) Temperature at upstream tapping (t ₁)	kg/s - mm bar(a) bar(a) bar(a) °C	0 0 0 0 0 0 0 0 0
tatus Iass flow rate eta ratio Irifice diameter ipe diameter Ipstream pressure ressure at downstream ta ecovered downstream pr Ipstream temperature emperature at downstrea	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream pressure (p3) Temperature at upstream tapping (t1) Temperature at downstream tapping (t2)	kg/s - mm bar(a) bar(a) bar(a) °C °C	0 0 0 0 0 0 0 0 0 0 0
tatus lass flow rate eta ratio prifice diameter ipe diameter lpstream pressure ressure at downstream ta ecovered downstream pr lpstream temperature emperature at downstrea iownstream Temperature	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t1) Temperature at downstream tapping (t2) * 'Fully recovered' downstream temperature (t3)	kg/s - mm bar(a) bar(a) bar(a) oC °C °C	0 0 0 0 0 0 0 0 0 0 0 0
tatus lass flow rate eta ratio prifice diameter ipe diameter pstream pressure ressure at downstream ta ecovered downstream pri pstream temperature emperature at downstrea iownstream Temperature pstream density	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t1) am tapping Temperature at downstream tapping (t2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (p1)	kg/s - mm bar(a) bar(a) bar(a) or or c c kg/m3	0 0 0 0 0 0 0 0 0 0 0 0 0 0
tatus lass flow rate leta ratio Drifice diameter ipe diameter lpstream pressure ressure at downstream ta lecovered downstream pre lecovered downstream ta emperature at downstreae lownstream Temperature lpstream density lensity at downstream tap	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t1) am tapping Temperature at downstream tapping (t2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (p1) Pressure at downstream temperature (t3) Density at upstream tapping (p2)	kg/s - mm bar(a) bar(a) bar(a) oC °C °C kg/m3 kg/m3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tatus fass flow rate leta ratio orifice diameter ipe diameter lpstream pressure ressure at downstream ta lecovered downstream pre- lpstream temperature emperature at downstreae pownstream Temperature lpstream density pensity at downstream tag pownstream density	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t2) am tapping Temperature at upstream tapping (t2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (p3) The pipe Reynolds number (this is the Reynolds number upstream of the orifice and not the one	kg/s - mm bar(a) bar(a) bar(a) °C °C °C kg/m3 kg/m3	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aass flow rate Jeta ratio Drifice diameter Pipe diameter Jpstream pressure Pressure at downstream ta Jecovered downstream pro Jpstream temperature Jemperature at downstream Jopstream Temperature Jopstream density Density at downstream tap Downstream density Density at downstream tap	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t2) •	kg/s - mm bar(a) bar(a) bar(a) °C °C kg/m3 kg/m3 kg/m3 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aunction outputs Aass flow rate Mass flow ra	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t2) am tapping Temperature at upstream tapping (t2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (p3) The pipe Reynolds number (this is the Reynolds number upstream of the orifice and not the one	kg/s - mm bar(a) bar(a) bar(a) °C °C kg/m3 kg/m3 - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aass flow rate Jeta ratio Drifice diameter Pipe diameter Ipstream pressure Pressure at downstream ta Recovered downstream pre- Jpstream temperature Jpstream temperature Jownstream Temperature Jpstream density Density at downstream tap Downstream density Reynolds number Discharge coefficient Expansion Factor	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t2) am tapping Temperature at upstream tapping (t2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (p3) The pipe Reynolds number (this is the Reynolds number upstream of the orifice and not the one	kg/s - mm bar(a) bar(a) bar(a) °C °C °C kg/m3 kg/m3 kg/m3 - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aass flow rate Jeta ratio Drifice diameter Pipe diameter Ipstream pressure Pressure at downstream ta Recovered downstream pre Jpstream temperature Jopstream temperature Jopstream density Density at downstream tap Downstream density Density at downstream tap Downstream density Density at downstream tap Downstream density Density at downstream tap Discharge coefficient Expansion Factor Yelocity of Approach	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream temperature Pressure at downstream tapping (p ₁) apping Pressure at downstream tapping (p ₂) essure Fully recovered downstream pressure (p ₃) Temperature at upstream tapping (t ₁) am tapping Temperature at downstream tapping (t ₂) e 'Fully recovered' downstream temperature (t ₃) Density at upstream tapping (ρ ₂) pping Pressure at downstream tapping (ρ ₂) pping Pressure at downstream tapping (ρ ₂) The pipe Reynolds number (this is the Reynolds number upstream of the orifice and not the one within the device throat itself	kg/s - mm bar(a) bar(a) bar(a) °C °C kg/m3 kg/m3 - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aass flow rate Jeta ratio Drifice diameter Pipe diameter Ipstream pressure Pressure at downstream ta Recovered downstream pre- Jpstream temperature Jpstream temperature Jownstream Temperature Jpstream density Density at downstream tap Downstream density Reynolds number Discharge coefficient Expansion Factor	0: Normal (No error condition) 1: Input argument out of range 2: No convergence The calculated mass flow rate Orifice to pipe diameter ratio at upstream temperature At the upstream temperature and optionally with a correction for the drain hole At the upstream temperature Pressure at upstream tapping (p1) apping Pressure at downstream tapping (p2) essure Fully recovered downstream tapping (t2) am tapping Temperature at upstream tapping (t2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (t3) Density at upstream tapping (ρ2) • 'Fully recovered' downstream temperature (p3) The pipe Reynolds number (this is the Reynolds number upstream of the orifice and not the one	kg/s - mm bar(a) bar(a) bar(a) °C °C °C kg/m3 kg/m3 kg/m3 - - - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Function outputs	Remark	EU	Fallback
	1: Reynolds number is out of valid range		
Diameter Range	0: Device and pipe diameter and Beta ratio in valid range	-	0
	1: Device diameter, pipe diameter and/or Beta ratio out of valid range		

Pressure correction

The relation between the pressure at the upstream tapping p_1 and the pressure at the downstream tapping (p_2) is as following:

$$p_2 = p_1 - \Delta p / 1000$$

The relation between the pressure at the upstream tapping and the fully recovered pressure (p3) is as following:

$p_3 = p_1 - p_{LOSS}$

The calculation of P_{LOSS} is as defined in the standard.

Where:

p1	Pressure at upstream tapping	[bar(a)]
p ₂	Pressure at downstream tapping	[bar(a)]
p ₃	Fully recovered downstream pressure	[bar(a)]
Δp	Differential pressure	[mbar]
p Loss	Pressure loss over the meter	[bar]

Temperature correction

When input 'Temperature correction' is set to 1, then an <u>isentropic</u> expansion based on the isentropic coefficient is applied:

$$t_{2} = (t_{3} + 273.15) \cdot \left(\frac{p_{3}}{p_{2}}\right)^{\frac{1-\kappa}{\kappa}} - 273.15$$
$$t_{1} = (t_{3} + 273.15) \cdot \left(\frac{p_{3}}{p_{1}}\right)^{\frac{1-\kappa}{\kappa}} - 273.15$$

When input 'Temperature correction' is set to 2, then an isentropic expansion based on input 'Temperature exponent' is applied:

$$t_{2} = (t_{3} + 273.15) \cdot \left(\frac{p_{3}}{p_{2}}\right)^{K_{TE}} - 273.15$$
$$t_{1} = (t_{3} + 273.15) \cdot \left(\frac{p_{3}}{p_{1}}\right)^{K_{TE}} - 273.15$$

When input 'Temperature correction' is set to 3, then an <u>isenthalpic</u> expansion based on the linear Joule Thomson correction as defined in ISO5167-1:2003, taking input 'Temperature exponent' as the Joule Thomson coefficient:

$$t_1 = t_2 + (p_1 - p_2) \cdot \mu_{JT}$$

$$t_1 = t_3 + (p_1 - p_3) \cdot \mu_{JT}$$

Where:

which		
t1	Upstream temperature	°C
t₃	Downstream temperature	°C
p1	Upstream pressure	bar(a)
p₃	Fully recovered downstream pressure	bar(a)
κ	Isentropic exponent	-

Kte	Temperature exponent	-
μјт	Joule Thomson coefficient	°C/bar

ISO-5167 edition 2003 prescribes an <u>isenthalpic</u> expansion instead of an isentropic expansion. This can be achieved by assigning a fixed Joule Thomson coefficient to input 'Temperature Exponent'.

NOTE: ISO is working a method to calculate the Joule Thomson rather than using a fixed value.

Density correction

When input 'Density exponent' = 0, then the following <u>isentropic</u> corrections are applied (depending on the type of Density Correction)

$$\rho_1 = \rho_2 \cdot \left(\frac{p_1}{p_2}\right)^{\frac{1}{\kappa}} \qquad \rho_1 = \rho_3 \cdot \left(\frac{p_1}{p_3}\right)^{\frac{1}{\kappa}}$$

Else the value of input 'Density Exponent' is used

$$\rho_1 = \rho_2 \cdot \left(\frac{p_1}{p_2}\right)^{K_{DE}} \qquad \rho_1 = \rho_3 \cdot \left(\frac{p_1}{p_3}\right)^{K_{DI}}$$

Where:

ρ1	Upstream density	[kg/m3]
ρ2	Density at the downstream tapping	[kg/m3]
ρз	Density at the fully recovered downstream pressure	[kg/m3]
p1	Upstream pressure	[bar(a)]
p ₂	Pressure at the downstream tapping	[bar(a)]
р₃	Fully recovered downstream pressure	[bar(a)]
κ	Isentropic exponent	[-]
Kde	Density exponent	[-]

NOTE: In March 2007 the British DTI (Department of Trade and Industry) has recommended that the density correction method should not be based on isentropic expansion but on <u>isenthalpic</u> expansion instead.

The correction assumes that the density is measured at p_2 (downstream pressure tapping pressure) and t_3 (downstream recovered temperature). For this situation the following density correction is defined:

$$\rho_1 = \rho_M \cdot \frac{p_1 \cdot t_3 \cdot Z(p_2, t_3)}{p_2 \cdot t_1 \cdot Z(p_1, t_1)}$$

Where:

ρ_1	Upstream density	[kg/m3]
ρм	Measured density from the densitometer at p_2 and $t_{\scriptscriptstyle 3}$	[kg/m3]
p ₁	Upstream pressure	[bar(a)]
p ₂	Pressure at the downstream tapping	[bar(a)]
t1	Upstream temperature	°C

t3	Temperature at downstream side Where pressure has	°C
	fully recovered	
Z(p1,t1)	Compressibility at p_1 and t_1	[-]
Z(p ₂ ,t ₃)	Compressibility at p2 and t3	[-]

When required, this correction should be applied outside the ISO5167 function by defining an additional compressibility calculation (e.g. AGA8) at p_2 and t_3 in the application and calculating the upstream density, Where the value of p_2 is provided as an output by the ISO5167 function. Subsequently the upstream density is calculated and fed into the ISO5167 function (input 'Density') with input 'Density Correction' set to 'Upstream density'.

Correction for drain hole

When input 'Drain hole' is > 0 then the following correction factor is applied on the orifice diameter according to the British standard 1042: Part 1: 1964 and ISO/TR 15377:2007

$$C_{DH} = 1 + 0.55 * \left(\frac{d_{DH}}{d_0}\right)^2$$

Where:

Срн	Darin hole correction factor on orifice diameter	[-]
d _{DH}	Drain hole diameter	[mm]
do	Orifice diameter at reference temperature (i.e. input	[mm]
	'Orifice diameter')	

fxISO5167_Venturi

The function calculates the mass flow rate for **classical Venturi** tube pressure differential flow devices according to the ISO-5167 standard.

Compliance

- ISO-5167 1991 Measurement of fluid flow by means of pressure differential devices, 1st edition, 1991
- ISO-5167 Amd.1 : 1998(E)
- ISO-5167 2003 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full, 2nd edition, 2003

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Differential Pressure	Differential pressure over the primary flow device measured at the up- and downstream	mbar		0
	pressure tappings, which need to be in the positions as specified in the standard			
Pressure	Upstream pressure value of the fluid at metering conditions	bar(a)		0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°C		0
Density	Down or upstream density of the fluid at metering conditions	kg/m3		0
Dynamic Viscosity	Dynamic viscosity of the fluid	Pa.s		0
Isentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the specific	-		0
	heat capacity at constant pressure to the specific heat at constant volume. According to the ISO			
	standard this ratio may be used, when the real value is unknown.			
Pipe Diameter	Internal diameter of the pipe at reference temperature	mm		0
Pipe Expansion factor	The thermal expansion coefficient of the pipe material	1/°C		0.0000108
Pipe Reference	The reference temperature that corresponds to the 'Pipe diameter' input value	°C		20
temperature				
Venturi Diameter	Venturi diameter at reference temperature	mm		0
Venturi Expansion factor	The thermal expansion coefficient of the Venturi material	1/°C		0.0000163
Venturi Reference	The reference temperature that corresponds to the 'Venturi diameter' input value	°C		20
Temperature				
Configuration	The type of classical venturi tube.	-		2
	Three configurations are permitted by the ISO5167 standard. Each configuration has a different			
	calculation of the discharge coefficient and of the expansion factor			
	1: As cast convergent section			
	2: Rough welded			
	3: Machined			
	4: User-defined (not according to the standard!)			
	When 'User-defined' is selected then the input 'Discharge coefficient' will be used in the			
	calculations instead.			
Pressure Location	1: Upstream	-		1
	Input 'Pressure' represents the pressure at the upstream pressure tapping (p_1).			
	Since the absolute pressure is usually measured at the upstream tapping this is the most			
	common setting.			
	2: Downstream			
Tomporatura Location	Input 'Pressure' represents the pressure at the downstream tapping (p ₂).			2
Temperature Location	1: Upstream Input 'Temperature' represents the upstream temperature (t_1).	-		2
	2: Downstream			
	Input 'Temperature represents the temperature at the downstream tapping (t_2).			
	3: Recovered			
	Input 'Temperature' represents the downstream temperature at a location Where the pressure			
	has fully recovered (t ₃).			
	Since temperature measurement is usually downstream of the flow device this is the most			
	common setting.			
Temperature Correction	This parameter specifies how the temperature should be corrected from downstream to			3
	upstream conditions (or vice versa)			
	1: (1-κ)/κ			
	Isentropic expansion using (1- κ)/ κ as the temperature referral exponent			
	2: Constant			
	Isentropic expansion using input 'Temperature Exponent' as the temperature referral exponent			
	[-].			
	Please note that this value must be < 0			
	3: Joule Thomson			
	Isenthalpic expansion using input 'Temperature Exponent' as the Joule Thomson coefficient			
	[°C/bar].			
	This method is prescribed by ISO5167-1:2003.			
Temperature Exponent	Refer to input Temperature Correction	-		0
	Unit depends on input Temperature Correction value	-°C/bar		
Density Location	This parameter specifies if and how the density should be corrected from downstream to	-		1
	upstream conditions (or vice versa).			
	1: Upstream			
	Input 'Density' represents the density at the upstream pressure tapping (ρ_1).			
	2: Downstream			

Function inputs	Remark	EU	Range	Default
	Input 'Density' represents the density at the downstream tapping ($ ho_2$).			
	3: Recovered			
	Input 'Density' represents the density downstream at a location Where the pressure has fully			
	recovered (ρ ₃).			
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be used when the	-		0
	input value is set to 0, else the input value will be used.			
	For more details refer to section 'Density correction'.			
Fluid	The type of fluid being measured	-		1
	1: Gas			
	2: Liquid			
Pressure Loss Mode	The method for determining the pressure loss	-		1
	1: Absolute value in mbar			
	The value of input 'Pressure Loss Value' is taken as a value in mbar			
	2: Percentage of differential pressure			
	The value of input 'Pressure Loss Value' is taken as a percentage from input 'Differential			
	Pressure'			
Pressure Loss Value	Value in mbar or %, depending on the 'Pressure Loss Mode'.	mbar		0
	The pressure loss over the Venturi is used to calculate the downstream fully recovered pressure.	%		
	The pressure loss equals the difference between the upstream pressure (p_1) and the fully			
	recovered downstream pressure (p₃)			
	The standard prescribes that only the pressure loss that is caused by the venturi tube should be			
	included (so it should not include the pressure loss that occurred between the two pressure			
	tappings before the venturi tube was installed).			
Discharge coefficient	This value will used instead of the discharge coefficient as specified in the standard.	-		0
	Only used when input 'Configuration' is set to 'User-defined'.			

Function outputs	Remark	EU	Fallback
Status	0: Normal (No error condition)		
	1: Input argument out of range		
	2: No convergence		
Mass flow rate	The calculated mass flow rate	kg/s	0
Beta ratio	Venturi to pipe diameter ratio at upstream temperature	-	0
Venturi diameter	At the upstream temperature	mm	0
Pipe diameter	At the upstream temperature	mm	0
Upstream pressure	Pressure at upstream tapping (p1)	bar(a)	0
Pressure at downstream tapping	Pressure at downstream tapping (p2)	bar(a)	0
Recovered downstream pressure	Fully recovered downstream pressure (p ₃)	bar(a)	0
Upstream temperature	Temperature at upstream tapping (t ₁)	°C	0
Temperature at downstream tapping	Temperature at downstream tapping (t ₂)	°C	0
Downstream Temperature	'Fully recovered' downstream temperature (t3)	°C	0
Upstream density	Density at upstream tapping (p1)	kg/m3	0
Density at downstream tapping	Pressure at downstream tapping (ρ₂)	kg/m3	0
Downstream density	'Fully recovered' downstream density (ρ₃)	kg/m3	0
Reynolds number	The pipe Reynolds number (this is the Reynolds number upstream of the Venturi and not the one within the device throat itself	-	0
Discharge coefficient		-	0
Expansion Factor		-	0
Velocity of Approach			0
Pressure Range	0: Pressure is in valid range	-	0
	1: Pressure is out of valid range		
Reynolds Range	0: Reynolds number is in valid range	-	0
	1: Reynolds number is out of valid range		
Diameter Range	0: Device and pipe diameter and Beta ratio in valid range	-	0
	1: Device diameter, pipe diameter and/or Beta ratio out of valid range		

fxISO5167_VenturiNozzle

The function calculates the mass flow rate for **Venturi Nozzle** pressure differential flow devices according to the ISO-5167 standard.

Compliance

- ISO-5167 1991 Measurement of fluid flow by means of pressure differential devices, 1st edition, 1991
- ISO-5167 Amd.1 : 1998(E)
- ISO-5167 2003 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full, 2nd edition, 2003

Function inputs	Remark	EU	Default
Name	Optional tag name, tag description and tag group		
Differential Pressure	Differential pressure over the primary flow device measured at the up- and downstream pressure tappings, which need to be in the positions as specified in the standard	mbar	0
Pressure	Upstream pressure value of the fluid at metering conditions	bar(a)	0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°C	0
Density	Down or upstream density of the fluid at metering conditions	kg/m3	0
Dynamic Viscosity	Dynamic viscosity of the fluid	Pa.s	0
Isentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the specific heat		0
	capacity at constant pressure to the specific heat at constant volume. According to the ISO standard this		
	ratio may be used, when the real value is unknown.		
Pipe Diameter	Internal diameter of the pipe at reference temperature	mm	0
Pipe Expansion factor	The thermal expansion coefficient of the pipe material	1/°C	0.0000108
Pipe Reference temperature	The reference temperature that corresponds to the 'Pipe diameter' input value	°C	20
Venturi Nozzle Diameter	Venturi Nozzle diameter at reference temperature	mm	0
Venturi Nozzle Expansion factor	The thermal expansion coefficient of the Venturi Nozzle material	1/°C	0.0000163
Venturi Nozzle Reference Temperature	The reference temperature that corresponds to the 'Venturi Nozzle diameter' input value	°C	20
Pressure Location	 Input 'Pressure' represents the pressure at the upstream pressure tapping (p1). Since the absolute pressure is usually measured at the upstream tapping this is the most common setting. 	-	1
	2 Input 'Pressure' represents the pressure at the downstream tapping (p_2) .		
Temperature Location	1 Input 'Temperature' represents the upstream temperature (t _i).	-	2
	2 Input 'Temperature represents the temperature at the downstream tapping (t ₂).		
	 Input 'Temperature' represents the downstream temperature at a location Where the pressure has fully recovered (t₃). Since temperature measurement is usually downstream of the flow device this is the most common setting. 		
Temperature Correction	1 Isentropic expansion using (1-κ)/κ as the temperature referral exponent		3
	2 Isentropic expansion using input 'Temperature Exponent' as the temperature referral exponent [-]		
	3 Isenthalpic expansion using input 'Temperature Exponent' as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003.		
Temperature Exponent	Refer to input Temperature Correction	-°C/bar	0
Density Location	This parameter specifies if and how the density should be corrected from downstream to upstream conditions.	-	1
	1 Input 'Density' represents the density at the upstream pressure tapping (ρ_1).		
	2 Input 'Density' represents the density at the downstream tapping (ρ_2).		
	3 Input 'Density' represents the density downstream at a location Where the pressure has fully recovered (ρ ₃).		
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be used when the input value is set to 0, else the input value will be used.	-	0
	For more details refer to function 'ISO5167 - Orifice' section 'Density correction'		
Fluid	The type of fluid being measured	-	1
	1: Gas		
	2: Liquid		
Pressure Loss Mode	The method for determining the pressure loss	-	1
	Absolute value in mbar The value of input 'Pressure Loss Value' is taken as a value in mbar		
	2 Percentage of differential pressure The value of input 'Pressure Loss Value' is taken as a percentage from input 'Differential Pressure'		
Pressure Loss Value	Value in mbar or %, depending on the 'Pressure Loss Mode'. The pressure loss over the Venturi nozzle is used to calculate the downstream fully recovered pressure. The	mbar %	0
	pressure loss equals the difference between the upstream pressure (p1) and the fully recovered downstream pressure (p3) The standard prescribes that only the pressure loss that is caused by the venturi nozzle should be included		
	(so it should not include the pressure loss that occurred between the two pressure tappings before the venturi nozzle was installed).		
Function outputs	Remark	EU	Fallback

Function outputs	Remark	EU	Fallback
	1: Input argument out of range		
	2: No convergence		
Mass flow rate	The calculated mass flow rate	kg/s	0
Beta ratio	Venturi nozzle to pipe diameter ratio at upstream temperature		0
Venturi Nozzle diameter	At the upstream temperature		0
Pipe diameter	At the upstream temperature		0
Upstream pressure	Pressure at upstream tapping (p1)	bar(a)	0
Pressure at downstream tapping	Pressure at downstream tapping (p2)	bar(a)	0
Recovered downstream pressure	Fully recovered downstream pressure (p3)	bar(a)	0
Upstream temperature	Temperature at upstream tapping (t1)	°C	0
Temperature at downstream tapping	Temperature at downstream tapping (t2)	°C	0
Downstream Temperature	'Fully recovered' downstream temperature (t3)	°C	0
Upstream density	Density at upstream tapping (ρ_1)	kg/m3	0
Density at downstream tapping	Pressure at downstream tapping (p2)	kg/m3	0
Downstream density	'Fully recovered' downstream density (ρ₃)	kg/m3	0
Reynolds number	The pipe Reynolds number (this is the Reynolds number upstream of the Venturi nozzle and not	-	0
	the one within the device throat itself		
Discharge coefficient		-	0
Expansion Factor		-	0
Velocity of Approach			0
Pressure Range	0: Pressure is in valid range	-	0
	1: Pressure is out of valid range		
Reynolds Range	0: Reynolds number is in valid range	-	0
	1: Reynolds number is out of valid range		
Diameter Range	0: Device and pipe diameter and Beta ratio in valid range	-	0
	1: Device diameter, pipe diameter and/or Beta ratio out of valid range		

Temperature correction

When input "Temperature exponent' = 0, then an isentropic expansion is applied:

$$t_1 = (t_3 + 273.15) \cdot \left(\frac{p_3}{p_1}\right)^{\frac{1-\kappa}{\kappa}} - 273.15$$

Else the value of input 'Temperature exponent' is used:

$$t_1 = (t_3 + 273.15) \cdot \left(\frac{p_3}{p_1}\right)^{k_{TE}} - 273.15$$

Where:

t1	Upstream temperature	[°C]
t₃	Downstream temperature	[°C]
p1	Upstream pressure	[bar(a)]
p₃	Fully recovered downstream pressure	[bar(a)]
κ	Isentropic exponent	[-]
Kte	Temperature exponent	[-]

fxISO6976_1983_M

ISO standard 6976 defines component properties and calculations to determine the calorific value, density and relative density for a gas composition at the specified metering and combustion reference temperatures and 1.01325 bar(a).

Compliance

 International standard, Natural Gas - Calculation of calorific values, density, relative density and Wobbe index (ISO 6976:1983)

Boundaries

ISO6976:1983 does not define limits for its input data.

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	01	0
Metering reference temperature	Temperature used for calculating the compressibility, the density and the real relative	-		1
	density values			
	1: 0 °C			
	2: 15 °C			
Calorific value reference temperature	Temperatures used for calculating the calorific values.	-		1
	1st value represents the combustion reference temperature and the 2nd value the Gas			
	volume reference temperature			
	1: 25 °C / 0 °C			
	2: 0 °C / 0 °C			
	3: 15 °C / 0 °C			
	4: 15 °C / 15 °C			
	5: 60 °F / 60 °F			

Function outputs	Remark	EU	Fallback
Status	0: Normal		
	1: Input argument out of range		
	2: Calculation error		
	3: Mole fractions do not add up to 1.0 +- 0.0001		
Superior calorific value	Real value at the reference conditions of temperature and pressure	MJ/m3	0
Density	At the reference conditions of temperature and pressure	kg/m3	0
Compressibility		-	1
Relative density		-	0
Molar mass		kg/kmol	0

Calculations

Calculations are performed in accordance with the standard, using the values as listed in the tables of the standard.

fxISO6976_1995_M

ISO standard 6976 edition 1995 defines component properties and calculations to determine the calorific value, density, relative density and Wobbe index for a gas composition at the specified metering and combustion reference temperatures and 1.01325 bar(a).

Both the definitive and alternative methods of calculating the calorific value on a mass and volumetric basis are included.

Boundaries

The valid ranges for molar fractions are as follows:

 Methane 	0.5 <= <= 1.0
 Nitrogen 	0.0 <= <= 0.3
Ethane	0.0 <= <= 0.15
Carbon dioxide	0.0 <= <= 0.15
All others	0.0 <= <= 0.05

Compliance

 International standard, Natural Gas - Calculation of calorific values, density, relative density and Wobbe index (ISO 6976:1995/BS7589)

Composition Standard composition as defined in section "Standard gas composition. mol/mol 0.1 0 Reference conditions The reference temperature for combustion / metering: 1: 15°C / 15°C 1 2: 0°C / 0°C 3: 15°C / 0°C 3: 5°C / 0°C 3: 25°C / 20°C 6: 25°C / 20°C Molar mass table 1: Calculate - 1 Molar mass table 1: Calculate - 1 Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard - 1 Calculates the molar mass from Table 1 of the standard - 1 1 Calculates the molar mass values. Calculates the molar mass values from the standard - 1 Calculates the molar mass values from table 3 and from the calculated molar mass values. Calculates the volume based calorific value from table 3 and from the calculated molar mass values. 1 Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.T2 2. Alternative method EU Falbek Status 0: Normal 1: Input argument out of range 2: Calculation error 3 3 Status 0: Normal 1: Input argument out of range 2: Calculation of temperature and pressure<	Function inputs	Remark	EU	Range	Default
Reference conditions The reference temperature for combustion / metering: 1 1: 15°C / 15°C 2: 0°C / 0°C 3: 15°C / 0°C 3: 5°C / 0°C 3: 20°C / 20°C 5: 20°C / 20°C 6: 25°C / 20°C 6: 25°C / 20°C Calculate 1: Calculate method 2: Calculate molar mass from the atomic masses as defined in the note of Table 1 of the standard 1 Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 1 Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 1 Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 1 Calculates the values from Table 1 of the standard 1 Calculates the molar mass values. Calculates the molar based calorific values from table 3 and from the calculate the nolar mass values. Calculates the values from tables 3, 4 and 5 as listed in the standard. EU Function outputs Remark EU Fallback 0: Normal 1 1: hight argument out of range 2: Calculation error 3: Mole fractions od not add up to 1.0 +-0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of tem	Name	Optional tag name, tag description and tag group			
1:15°C / 15°C 2:0°C / 0°C 3:15°C / 0°C 3:15°C / 0°C 4:25°C / 20°C 5:20°C / 20°C Molar mass table 1:Calculate method Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 2: Table - Uses the values from Table 1 of the standard - Calculates the method 1: Definitive method Calculates the values from table 1 of the standard - Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculated molar mass values. - Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.72 - 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions of onto add up to 1.0 + 0.0001 Superior calorific value - 1 Relative density - 0 Molar mass - 1 Superior calorific value - 1 Density A the	Composition	Standard composition as defined in section 'Standard gas composition.	mol/mol	01	0
2: O'C. O'O'C 3: 15°C / 0°C 3: 15°C / 0°C 4: 25°C / 0°C 5: 20°C / 20°C 6: 25°C / 20°C Molar mass table 1: Calculate method Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 2: Table - Uses the values from Table 1 of the standard - Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculates the mass based calorific value by multiplying the molar based calorific values from table 3 by p2/R.T2 2: Alternative method - Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark EU Fallback Status 0: Normal 1: Input argument out of range - 2: Calculation error 3: Mole fractions od not add up to 1.0 + 0.0001 3: Mole fractions do not add up to 1.0 + 0.0001 - Status 0: Normal Ineffor calorific value Real superior calorific value on wolume basis at the reference conditions of temperature and pressure MJ/m3 Superior calorific value Real superior calorific value on mole basis at the referen	Reference conditions	The reference temperature for combustion / metering:			1
3: 15°C / 0°C 4: 25°C / 20°C 6: 25°C / 20°C Molar mass table 1: Calculate 0: Table Uses the values from Table 1 of the standard 2: Table Uses the values from Table 2 of the standard 1: Calculates 1: Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculated molar mass values. Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.72 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. Etu Function outputs Remark Etu Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Usefractions do not add up to 1.0 + 0.0001 Superior calorific value Real superior calorific value on nolume basis at the reference conditions of temperature and pressure <t< td=""><td></td><td>1: 15°C / 15°C</td><td></td><td></td><td></td></t<>		1: 15°C / 15°C			
4:25°C / 0°C 5:20°C / 20°C 6:25°C / 20°C 6:25°C / 20°C 1 Molar mass table 1: Calculate 1 method Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 		2: 0°C / 0°C			
5: 20°C / 20°C 6: 25°C / 20°C Molar mass table 1: Calculate method 2: Table Uses the values from Table 1 of the standard - Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard - Calculates the values from Table 1 of the standard - 1 Calculates the values from Table 1 of the standard - 1 Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculates the values from tables 3, 4 and 5 as listed in the standard. - 1 Status Calculates the values from tables 3, 4 and 5 as listed in the standard. - Fallback Status 0: Normal - 1 - 1 Status 0: Normal - - 1 - Superior calorific value Rea superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility - 1 - 1 Relative density - 0 - 1 Molar mass Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/m3 0 </td <td></td> <td>3: 15°C / 0°C</td> <td></td> <td></td> <td></td>		3: 15°C / 0°C			
6: 25°C / 20°C Molar mass table 1: Calculate method Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard 2: Table Uses the values from Table 1 of the standard Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculated molar mass values. 1 Calculates the volume based calorific value from the molar based calorific values from table 3 by p2/R.12 1 Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.12 1 Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.12 1 Status 0: Normal EU Fallback Status 0: Normal 1 1 1: Input argument out of range 2: Calculation error 3 0 2: Calculates the conditions of temperature and pressure MJ/M3 0 Density At the reference conditions of temperature and pressure MJ/M3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/M3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of t		4:25°C / 0°C			
Molar mass table 1: Calculate - 1 method 2: Table - 1 Uses the values from Table 1 of the standard - 1 Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard - 1 Calculates the values from Table 1 of the standard - 1 Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.T2 - 1 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. - Function outputs Function outputs Remark EU Fallback Status 0: Normal - 1 Density At the reference conditions of temperature and pressure MJ/m3 0 Compressibility Referace conditions of temperature and pressure MJ/Kg 0 Rular mass Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/Kg 0 Density At the reference conditions of temperature and pressure MJ/Kml 0 0 Supe		5: 20°C / 20°C			
method Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard : Table 2: Table Uses the values from Table 1 of the standard - 1 Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculated molar mass values. - 1 Calculates the values from table 3, 4 and 5 as listed in the standard. - 1 Event values from tables 3, 4 and 5 as listed in the standard. - Fallback Status 0: Normal - - 1 1: Input argument out of range 2: Calculates from rougo at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure MJ/m3 0 Compressibility - 1 0 Superior calorific value Real superior calorific value on nolume basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value Real superior calorific value on nolume basis at the reference conditions of temperature and pressure MJ/km0 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/km0 0 Superior		6: 25°C / 20°C			
2: Table Uses the values from Table 1 of the standard Calorific value Refer to paragraph 6.1 and 7.1 of the standard - 1 calculation method 1: Definitive method - 1 calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculates the molar based calorific values from table 3 by p2/R.T2 2: Alternative method - 1 Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.T2 2: Alternative method - EU Faliback Function outputs Remark EU Faliback Faliback Status 0: Normal - 1 - 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility - 1 - 0 Molar mass Superior calorific value Real superior calorific value on nolume basis at the reference conditions of temperature and pressure MJ/M3 0 Compressibility - 1 0 - 0 Molar mass Superior calorific value Real superior calorific value on nole basis at the reference conditions	Molar mass table	1: Calculate	-		1
Uses the values from Table 1 of the standard . 1 Calorific value Refer to paragraph 6.1 and 7.1 of the standard . 1 calculation method 1. Definitive method . 1 Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculatet molar mass values. . . 1 Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.72 . . . Note the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.72 .	method	Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard			
Calorific value Refer to paragraph 6.1 and 7.1 of the standard - 1 calculation method 1: Definitive method 2: Definitive method 1 Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculated molar mass values. Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.T2 2: Alternative method EU Fallback Function outputs Remark EU Fallback Fallback Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility At the reference conditions of temperature and pressure MJ/m3 0 Relative density - 1 1 Molar mass Key/kmol 0 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/kg 0 Compressibility Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 S		2: Table			
calculation method 1: Definitive method Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.72 Set in the standard in the standard in the standard in the standard. Events Remark EU Fallback Status 0: Normal I: Input argument out of range Set calculates on table 10 + 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure Mg/m3 0 Superior calorific value Real superior calorific value on nose basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/M3 0 Superior calorific value Real superior calorific value on nole basis at the reference conditions of temperature and pressure MJ/M3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/Km0 0 Inferior calorific value Real superior calorific value on mole basis at the reference con					
Calculates the mass based calorific value from the molar based calorific values from table 3 and from the calculated molar mass values. Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.T2 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark EU Fallback Status 0: Normal I: Input argument out of range : Calculation error 3: 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/M3 0 Compressibility - 1	Calorific value	Refer to paragraph 6.1 and 7.1 of the standard	-		1
calculated molar mass values. Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R.72 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark EU Fallback Status 0: Normal I: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility - 1 1 Relative density - 0 0 Molar mass Superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/M3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mole basis at the reference condition	calculation method	1: Definitive method			
Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by p2/R, T2 Six is a second by the second by p2/R, T2 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark EU Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 MJ/m3 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility - 1 1 Relative density - 1 0 Molar mass kg/kmol 0 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure		Calculates the mass based calorific value from the molar based calorific values from table 3 and from the			
p2/R.T2 2: Alternative method Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark EU Fallback Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Pensity At the reference conditions of temperature and pressure kg/m3 0 Compressibility Real superior calorific value on wolume basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mole basis at th					
Prinction outputs Remark EU Fallback Status 0: Normal I: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility At the reference conditions of temperature and pressure kg/m3 0 Relative density - 1 1 Molar mass kg/kmol 0 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real infer					
Uses the values from tables 3, 4 and 5 as listed in the standard. Function outputs Remark EU Fallback Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Fallback MJ/m3 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Compressibility At the reference conditions of temperature and pressure kg/m3 0 Relative density - 0 1 Nolar mass kg/kmol 0 0 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature					
Function outputs Remark EU Fallback Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure kg/m3 0 Compressibility - 1 Relative density - 0 Molar mass Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmOl 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmOl 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 <					
Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure kg/m3 0 Compressibility - 1 Relative density - 0 Molar mass kg/kmol 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on wolume basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mass basi		Uses the values from tables 3, 4 and 5 as listed in the standard.			
Status 0: Normal 1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure kg/m3 0 Compressibility - 1 Relative density - 0 Molar mass kg/kmol 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on wolume basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mass basi					
1: Input argument out of range 2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure MJ/m3 0 Compressibility - 1 0 Relative density - 0 0 Molar mass kg/kmol 0 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basi	Function outputs	Remark	EU		Fallback
2: Calculation error 3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure kg/m3 0 Compressibility - 1 Relative density - 0 Molar mass kg/kmol 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/g 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/g 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m0 0 Superior calorific value Real inferior calorific value on wolume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/g 0 Inferi	Status	0: Normal			
3: Mole fractions do not add up to 1.0 +- 0.0001 Superior calorific value Real superior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Density At the reference conditions of temperature and pressure kg/m3 0 Compressibility - 1 Relative density - 0 Molar mass kg/km0 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m0 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mole basis at the reference conditions of temperature and pressure MJ/m3 0 Wobbe index MJ/m3		1: Input argument out of range			
Superior calorific valueReal superior calorific value on volume basis at the reference conditions of temperature and pressureMJ/m30DensityAt the reference conditions of temperature and pressurekg/m30Compressibility-1Relative density-0Molar masskg/km00Superior calorific valueReal superior calorific value on mass basis at the reference conditions of temperature and pressureMJ/kg0Superior calorific valueReal superior calorific value on mole basis at the reference conditions of temperature and pressureMJ/m30Inferior calorific valueReal inferior calorific value on volume basis at the reference conditions of temperature and pressureMJ/m30Inferior calorific valueReal inferior calorific value on mole basis at the reference conditions of temperature and pressureMJ/m30Inferior calorific valueReal inferior calorific value on mole basis at the reference conditions of temperature and pressureMJ/m30Inferior calorific valueReal inferior calorific value on mole basis at the reference conditions of temperature and pressureMJ/kg0Inferior calorific valueReal inferior calorific value on mole basis at the reference conditions of temperature and pressureMJ/m30Inferior calorific valueReal superior calorific value on mole basis at the reference conditions of temperature and pressureMJ/m30Wobbe indexMDMJ/m30MJ/m30Data rangeWith respect to the ISO6976-1995 standard the combination of input values is: <br< td=""><td></td><td></td><td></td><td></td><td></td></br<>					
At the reference conditions of temperature and pressure kg/m3 0 Compressibility - 1 Relative density - 0 Molar mass kg/kmol 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Wobbe index MJ/kmol 0 0 0 0 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: 0: In Range - - - - </td <td></td> <td>3: Mole fractions do not add up to 1.0 +- 0.0001</td> <td></td> <td></td> <td></td>		3: Mole fractions do not add up to 1.0 +- 0.0001			
Compressibility - 1 Relative density - 0 Molar mass kg/kmol 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Wobbe index MJ/m3 0 0 0 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: 0: In Range - - -	Superior calorific value	Real superior calorific value on volume basis at the reference conditions of temperature and pressure	MJ/r	n3	0
Relative density - 0 Molar mass kg/kmol 0 Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Wobbe index MJ/m3 0 0 0 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: 0: In Range - - -	Density	At the reference conditions of temperature and pressure	kg/n	n3	0
Molar masskg/kmol0Superior calorific valueReal superior calorific value on mass basis at the reference conditions of temperature and pressureMJ/kg0Superior calorific valueReal superior calorific value on mole basis at the reference conditions of temperature and pressureMJ/kmol0Inferior calorific valueReal inferior calorific value on volume basis at the reference conditions of temperature and pressureMJ/m30Inferior calorific valueReal inferior calorific value on mass basis at the reference conditions of temperature and pressureMJ/kg0Inferior calorific valueReal inferior calorific value on mass basis at the reference conditions of temperature and pressureMJ/kg0Inferior calorific valueReal superior calorific value on mole basis at the reference conditions of temperature and pressureMJ/kg0Inferior calorific valueReal superior calorific value on mole basis at the reference conditions of temperature and pressureMJ/kg0Wobbe indexMJ/m300Data rangeWith respect to the ISO6976-1995 standard the combination of input values is: 0: In Range-	Compressibility		-		1
Superior calorific value Real superior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Wobbe index MJ/m3 0	Relative density		-		0
Superior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kg 0 Wobbe index MJ/m3 0 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: 0: In Range -	Molar mass		kg/k	mol	0
Inferior calorific value Real inferior calorific value on volume basis at the reference conditions of temperature and pressure MJ/m3 0 Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/km 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/km 0 Wobbe index MJ/m3 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: 0: In Range	Superior calorific value	Real superior calorific value on mass basis at the reference conditions of temperature and pressure	MJ/k	g	0
Inferior calorific value Real inferior calorific value on mass basis at the reference conditions of temperature and pressure MJ/kg 0 Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Wobbe index MJ/m3 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: - 0: In Range - -	Superior calorific value	Real superior calorific value on mole basis at the reference conditions of temperature and pressure	MJ/k	mol	0
Inferior calorific value Real superior calorific value on mole basis at the reference conditions of temperature and pressure MJ/kmol 0 Wobbe index MJ/m3 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: 0: In Range -	Inferior calorific value	Real inferior calorific value on volume basis at the reference conditions of temperature and pressure	MJ/r	n3	0
Wobbe index MJ/m3 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: - 0: In Range	Inferior calorific value	Real inferior calorific value on mass basis at the reference conditions of temperature and pressure	MJ/k	g	0
Wobbe index MJ/m3 0 Data range With respect to the ISO6976-1995 standard the combination of input values is: - 0: In Range	Inferior calorific value	Real superior calorific value on mole basis at the reference conditions of temperature and pressure	MJ/k	mol	0
0: In Range	Wobbe index		MJ/r	n3	0
0: In Range	Data range	With respect to the ISO6976-1995 standard the combination of input values is:			-
1: Out of Range	-				
		1: Out of Range			

Calculations

Calculations are performed in accordance with the standard.

fxISO6976ex_1995_M

Extended version that takes the first 55 components as used in the standard plus an additional set of userdefinable components.

ISO standard 6976 edition 1995 defines component properties and calculations to determine the calorific value, density, relative density and Wobbe index for a gas composition at the specified metering and combustion reference temperatures and 1.01325 bar(a).

Both the definitive and alternative methods of calculating the calorific value on a mass and volumetric basis are included.

Boundaries

The valid ranges for molar fractions are as follows:

Methane	0.5 <= <= 1.0
Nitrogen	0.0 <= <= 0.3
Ethane	0.0 <= <= 0.15
Carbon dioxide	0.0 <= <= 0.15
All others	0.0 <= <= 0.05

Compliance

• International standard, Natural Gas - Calculation of calorific values, density, relative density and Wobbe index (ISO 6976:1995/BS7589)

Function inputs	Remark	EU	Default
Name	Optional tag name, tag description and tag group		
Composition	Array of mole fractions of the first 55 components as used in the standard.	mol/mol	0
	1: Methane		
	2: Ethane		
	3: Propane		
	4: n-Butane		
	5 2-Methylpropane		
	6: n-Pentane		
	7: 2-Methylbutane		
	8: 2,2-Dimethylpropane		
	9: n-Hexane		
	10: 2-Methylpentane		
	11: 3-Methylpentane		
	12: 2,2-Dimethylbutane		
	13: 2,3-Dimethylbutane		
	14: n-Heptane		
	15: n-Octane		
	16: n-Nonane		
	17: n-Decane		
	18: Ethylene		
	19: Propylene		
	20: 1-Butene		
	21: cis-2-Butene		
	22: trans-2-Butene		
	23: 2-Methylpropene		
	24: 1-Pentene		
	25: Propadiene		
	26: 1,2-Butadiene		
	27: 1,3-Butadiene		
	28: Acetylene		
	29: Cyclopentane		
	30: Methylcyclopentane		
	31: Ethylcyclopentane		
	32: Cyclohexane		
	33: Methylcyclohexane		
	34: Ethylcyclohexane		
	35: Benzene		
	36: Toluene		
	37: Ethylbenzene		
	38: o-Xylene		
	39: Methanol		
	40: Methanethiol		
	41: Hydrogen		
	42: Water		
	43: Hydrogen sulfide		
	44: Ammonia		
	45: Hydrogen cyanide		
	46: Carbon monoxide		
	47: Carbonyl sulfide		
	48: Carbon disulfide		
	49: Helium		
	50: Neon		
	51: Argon		
	52: Nitrogen		
	53: Oxygen		
	53. Oxygen 54: Carbon dioxide		

Function inputs	Remark	EU	Default
	55: Sulfur dioxide		
Reference conditions	The reference temperature for combustion / metering:		1
	1: 15°C / 15°C		
	2: 0°C / 0°C		
	3: 15°C / 0°C		
	4: 25°C / 0°C		
	5: 20°C / 20°C		
	6: 25°C / 20°C		
Molar mass table	1: Calculate	-	1
method	Calculates the molar mass from the atomic masses as defined in the note of Table 1 of the standard		
	2: Table		
	Uses the values from Table 1 of the standard		
Calorific value	Refer to paragraph 6.1 and 7.1 of the standard	-	1
calculation method	1: Definitive method		
	Calculates the mass based calorific value from the molar based calorific values from table 3 and from the		
	calculated molar mass values.		
	Calculates the volume based calorific value by multiplying the molar based calorific values from table 3 by		
	p2/R.T2		
	2. Alternative method		
	Uses the values from tables 3, 4 and 5 as listed in the standard.		
User-defined	Array of mole fractions of the additional user-definable components.	mol/mol	0
composition	Note: The inputs for the additional components are optional inputs.		
User-defined molar	Array of molar masses of the additional user-definable components. This should be the molar mass	kg/kmol	0
mass	corresponding to the current 'Molar mass table method'.	5.	
	Note: This array should be exactly as long as the user-defined composition array.		
Jser-defined	Array of summation factor values of the additional user-definable components.	-	0
summation factor	Note: The input values have to correspond with the metering conditions of input 'Reference conditions.		
	This array should be exactly as long as the user-defined composition array.		
User-defined superior	Array of Superior Calorific Values of the additional user-definable components. This should be the SCV	KJ/mol	0
calorific value (SCV)	corresponding to the current reference conditions.	-,	
,	Note: the input values have to correspond with the conditions as defined by input 'Reference conditions.		
	This array should be exactly as long as the user-definable composition array.		
User-defined inferior	Array of Inferior Calorific Values of the additional user-definable components. This should be the ICV	KJ/mol	0
calorific value (ICV)	corresponding to the current reference conditions.	-,	-
	Note: the input values have to correspond with the conditions as defined by input 'Reference conditions.		
	This array should be exactly as long as the user-definable composition array.		

Function outputs	Remark	EU	Fallback
Status	0: Normal		
	1: Input argument out of range		
	2: Calculation error		
	3: Mole fractions do not add up to 1.0 +- 0.0001		
Superior calorific value	Real superior calorific value on volume basis at the reference conditions of	MJ/m3	0
	temperature and pressure		
Density	At the reference conditions of temperature and pressure	kg/m3	0
Compressibility		-	1
Relative density		-	0
Molar mass		kg/kmol	0
Superior calorific value	Real superior calorific value on mass basis at the reference conditions of temperature	MJ/kg	0
	and pressure		
Superior calorific value	Real superior calorific value on mole basis at the reference conditions of temperature and pressure	MJ/kmol	0
Inferior calorific value	Real inferior calorific value on volume basis at the reference conditions of	MJ/m3	0
	temperature and pressure		
Inferior calorific value	Real inferior calorific value on mass basis at the reference conditions of temperature and pressure	MJ/kg	0
Inferior calorific value	Real superior calorific value on mole basis at the reference conditions of temperature	MJ/kmol	0
Wobbe index	and pressure	M1/m2	0
		MJ/m3	0
Data range	With respect to the ISO6976-1995 standard the combination of input values is:		-
	0: In Range		
	1: Out of Range		

Calculations

Calculations are performed in accordance with the standard with the addition of the user-definable components.

based heating values that are calculated from these input properties. Only the Definitive Method for calculating the calorific value is supported in this case.

The properties of the user-definable components are specified by the corresponding inputs, except for the volume and mass

fxKeypadFallback

This function provides a generic interface to any input signal, such as a pressure, temperature, density or flow input. It provides the option to override the 'live' value with a keypad value and to fallback to a specific value when the input value is faulty.

When the input signal fails, the in-use value may fall back to the last good value, the keypad value or additionally a separate fallback value. The fallback value allows the user to define a fixed value (e.g. 0) that is independent from the current keypad value.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input status	Status of he input signal		INPSTS		
	0: Normal				
	<> 0: Failure				
	Must be linked to the Status output of the related input function				
Input value	Value of the input signal		INPVAL		
	Must be linked to the (scaled) value output of the related input function.				
Fallback type	Determines what to do when input fails		FBTYP		
	1: Use last good value				
	2: Use fallback value				
	3: Use keypad value				
	4: Use measured				
Fallback value	Used when output 'Input status' becomes 'Faulty' and 'Fallback type' is set to	Same as input	FBVAL		
	'Use fallback value'				
Keypad mode	Forces the usage of the keypad value		KPMOD	-	0
	0: Disabled				
	1: Enabled				
Keypad value	Used when output 'Input status' becomes 'Faulty' and 'Fallback type' is set to	Same as input	KPVAL		0
	'Use fallback value'				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS	-	
	1: Argument out of range			FIOOR	
	2: Keypad			FAILLG	
	3: Fail Last Good			FAILKP	
	4: Fail Keypad			FAILFB	
	5: Fail Fallback			KEYPAD	
	6: Fail Measured			FAILMS	
	Only for status 'Function Input argument out of range' the output vales will				
	revert to the corresponding fallback value.				
In-use value	· · · · · · · · · · · · · · · · · · ·	Same as input	CUR		0

fxKeypadFallbackArray

This function provides a generic interface to an array of input values, typically a gas composition. It provides the option to override the 'live' values with keypad values and to fallback to specific values when the set of input values is faulty. When the input signals fail, the in-use values may fall back to the last good values, the keypad values or additionally separate fallback values. The fallback values allow the user to define a fixed values (e.g. 0) that is independent from the current keypad values.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Input status	Status of the input signals		INPSTS		
	0: Normal				
	<> 0: Failure				
Input values	Array if input values		INPVAL		
Fallback type	Determines what to do when input fails		FBTYP		
	1: Use last good value				
	2: Use fallback value				
	3: Use keypad value				
	4: Use measured				
Fallback value	Array of fallback values.	Same as input	FBVAL		
	Used when output 'Input status' becomes 'Faulty' and 'Fallback type' is set to 'Use				
	fallback value'				
Keypad mode	Forces the usage of the keypad value		KPMOD	-	0
	0: Disabled				0
	1: Enabled				
Keypad value	Array of keypad values.	Same as input	KPVAL		0
	Used when output 'Input status' becomes 'Faulty' and 'Fallback type' is set to 'Use				
	fallback value'				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Argument out of range			FIOOR	
	2: Keypad			FAILLG	
	3: Fail Last Good			FAILKP	
	4: Fail Keypad			FAILFB	
	5: Fail Fallback			KEYPAD	
	6: Fail Measured			FAILMS	
	Only for status 'Function Input argument out of range' the output vales will revert				
	to the corresponding fallback value.				
In-use value	Array of in-use values	Same as input	CUR		0

fxLatch

The 'fxLatch' function provides generic latching functionality.

Function inputs	Remark	EU SV	/tag Ra	inge	Default
Name	Tag name for the cell that contains the 'fxLatchValue' function.				
Latch trigger	Trigger to latch the input value				
Input value	Value to be latched. May be a constant a formula or a reference to another cell or tag.				
Reset trigger	Optional				
	Trigger to resets the latched value to the reset value				
Reset value	Optional				
	Reset value (default 0). May be a constant or a formula.				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Latched value	The most recent latched value	Same as of	Input Nam	e	
	Note: this value is persistent and will be reloaded upon startup	input Input			
		Value			

fxLimitAlarm

The function applies alarm limits on any value.

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name				
Input value	Must be linked to another cell	Same as linked cell	INPVAL	-1e111e11	0
Low limit value		Same as Input value	LLIM	-1e111e11	-1e11
High limit value		Same as Input value	HLIM	Low limit value 1e11	-1e11
Low low limit value		Same as Input value	LLLIM	-1e11 Low limit value	1e11
High high limit value		Same as Input value	HHLIM	High limit value 1e11	1e11
Deadband		Same as Input value		01e11	0
Enabled	Enables or disables the alarm			True or false	True
Warning behavior	Determines the warning behavior when the lo and hi limit are violated: 1: No warnings, just alarms 2: Warn on lo limit 3: Warn on hi limit 4: Warn on lo and hi limit				1

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Alarm status	0: Normal	-	ALMSTS		
	1: Low alarm			LALM	
	2: High alarm			HALM	
	3: Low low alarm			LLALM	
	4: High high alarm			HHALM	

Logic

The order of priority in setting the alarm status output is as follows:

- 1 If process value is below the 'Low low limit value' then the status becomes '3: Low low alarm'.
- 2 Else if process value is above the 'High high limit value' then the status becomes '4: High high alarm'.
- 3 Else if process value is below the 'Low limit value' then the status becomes '1: Low alarm'.
- 4 Else if process value is above the 'High limit value' then the status becomes '2: High alarm' and the 'High high alarm' is raised
- 5 Else the status becomes '0: Normal'.

fxMR113

The relative humidity, compressibility, density, speed of sound, isentropic coefficient and optionally the dynamic viscosity of a gas are calculated from its composition, absolute humidity, temperature and pressure in accordance with the GOST MR113 standard. The CPU-intensive calculation of viscosity can be optionally enabled if the (flow computer) CPU capacity allows for this.

Compliance

• The GSSSD method MR 113-03. Kozlov, Mamonov, Rogovin, Rybakov, (10/06/2003).

Boundaries

The standard defines a valid range for pressure and temperature. The function will not accept input values outside this range

The valid range is as follows

- Pressure: 1 .. 150 bar(a)
- Temperature: 263..500 K (-10 ..+226 °C)

NOTE: the standard does not specify a range limitation for the components.

Function inpu	its and outputs
	-

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Pressure	Flowing pressure	bar(a)	1150	1.01325
Temperature	Flowing temperature	°C	-10+226	0
Composition	Standard composition as defined in section 'Standard gas composition. Unused	mol/mol	01	0
	components must be set to 0.			
neo-Pentane mode	Determines what to do when component neo-Pentane is larger than zero	-	13	1
	1: Add to i-Pentane			
	2: Add to n-Pentane			
	3: Neglect			
Absolute humidity	Absolute humidity at the humidity meter	kg/m3	01	0
Humidity pressure	Pressure value at the humidity meter	bar(a)	03500	1.01325
Humidity temperature	Temperature value at the humidity meter	°C	-250+450	0
Reference pressure	Reference pressure (base conditions)	bar(a)	03500	1.01325
Reference temperature	Reference temperature (base conditions)	°C	-250+450	0
Rounding	0: Disabled, full precision		01	0
5	1: Enabled, results are rounded			
Viscosity calculation	0: Disabled		01	0
,	1: Enabled			
	Note: the viscosity calculation is relative CPU-intensive.			
	Note: the viscosity calculation is relative CPU-intensive.			
Function outputs		FI	1	Fallback
Function outputs	Remark	E	IJ	Fallback
	Remark 0: Normal	E	J	Fallback
	Remark 0: Normal 1: Input argument out of range	E	J	Fallback
	Remark 0: Normal 1: Input argument out of range 2: Calculation error	E	J	Fallback
Status	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence	E	J	
Status Base Compressibility	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions		J	1
Status Base Compressibility Flow Compressibility	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions	-		1 1
Status Base Compressibility Flow Compressibility Base Density	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions	- - -	g/m3	1 1 0
Status Base Compressibility Flow Compressibility Base Density Flow Density	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions At reference conditions At reference conditions At reference conditions	- - -		1 1 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions	- - kç kç -	g/m3 g/m3	1 1 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions At reference conditions Isotropic exponent	- - - - - - -	g/m3 g/m3 g/kmol	1 1 0 0 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At flowing conditions Isotropic exponent	- - kg - kg m	g/m3 g/m3 g/kmol /s	1 1 0 0 0 0 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound Dew point	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At flowing conditions Isotropic exponent At flowing conditions	- - - - - - - - - - - - - - - - - - -	g/m3 g/m3 g/kmol /s	1 1 0 0 0 0 0 0 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound Dew point Viscosity	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions At reference conditions At reference conditions At flowing conditions Isotropic exponent At flowing conditions Water dew point, the temperature at which the water in the gas starts to condensate. The dynamic viscosity of the gas. The calculation is disabled by default.	- - - - - - - - - - - - - - - - - - -	g/m3 g/m3 g/kmol /s a.s	1 1 0 0 0 0 0 0 0 0 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound Dew point Viscosity Max water fraction	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At reference conditions At reference conditions At reference conditions At flowing conditions Isotropic exponent At flowing conditions Water dew point, the temperature at which the water in the gas starts to condensate. The dynamic viscosity of the gas. The calculation is disabled by default. Maximum water fraction at flowing conditions	- - kg - kg - kg M M K K Pa %	g/m3 g/m3 g/kmol /s a.s mole	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound Dew point Viscosity Max water fraction Water fraction	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions At flowing conditions Isotropic exponent At flowing conditions Water dew point, the temperature at which the water in the gas starts to condensate. The dynamic viscosity of the gas. The calculation is disabled by default. Maximum water fraction at flowing conditions Actual water fraction at flowing conditions	- - kg - kg - kg K K Pa % %	g/m3 g/m3 g/kmol /s a.s mole mole	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound Dew point /iscosity Max water fraction Nater fraction Relative humidity	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions At flowing conditions Isotropic exponent At flowing conditions Water dew point, the temperature at which the water in the gas starts to condensate. The dynamic viscosity of the gas. The calculation is disabled by default. Maximum water fraction at flowing conditions Actual water fraction at flowing conditions At flow conditions	- - kg - kg - kg M M K K Pa %	g/m3 g/m3 g/kmol /s a.s mole mole	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Function outputs Status Base Compressibility Flow Compressibility Base Density Flow Density Kappa Molar Mass Speed of Sound Dew point Viscosity Max water fraction Water fraction Relative humidity Range	Remark 0: Normal 1: Input argument out of range 2: Calculation error 3: No convergence At reference conditions At flowing conditions At reference conditions At flowing conditions Isotropic exponent At flowing conditions Water dew point, the temperature at which the water in the gas starts to condensate. The dynamic viscosity of the gas. The calculation is disabled by default. Maximum water fraction at flowing conditions Actual water fraction at flowing conditions	- - kg - kg - kg K K Pa % %	g/m3 g/m3 g/kmol /s a.s mole mole	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Calculations

The calculations are as documented in the reference.

fxName

The 'fxName' function creates a string that defines the prefix, description and group for any function that generates tags, except for function fxTag.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name for the tag				
Description	Optional description for the tag				<empty></empty>
Group	Optional Group for the tag, including optional parent groups.				<empty></empty>
	The parent group must proceed the child group and be separated by the '\' character.				
	E.g. "Meter setup\Meter data" defines that the tag belongs to group 'Meter data', which is a				
	subgroup of group "Meter setup".				

Function outputs Remark	EU	SW tag	Alarm	Fallback
String containing the name, description and group for the tag(s) to be created.				

fxNX19_1962

The AGA NX-19 standard describes a method to calculate the super-compressibility for natural gases and was developed in 1962.

The 1962 standard describes a standard method for calculating the super-compressibility factor that is based on the actual pressure and temperature, the specific gravity and the mole fractions of the carbon dioxide and nitrogen.

The 1962 standard also specifies 3 alternate methods, which are based on a full compositional analysis (1st alternate method), the relationship between methane and specific gravity (2nd alternate method) and the relationship between the heating value and the specific gravity

The function only performs the standard method as specified by the standard and none of the alternate methods.

NOTE: the definition of the specific gravity as used in the standard is that of the ratio of the density of the gas to that of air at base conditions, so the <u>real</u> specific gravity or real relative density.

Compliance

- AGA Par Research Project NX-19 Manual for the Determination. of the Supercompressibility Factors for Natural Gas, 1962
- Flow Measurement Engineering Handbook, Third edition, Richard W. Miller, 1996, ISBN-0-07-042366-0

Boundaries

The following boundaries apply for the input values. Using the standard for conditions that lie outside this range will yield to a higher uncertainty and is not recommended.

Temperature	-40240	°F
Pressure	05000	psig
Relative density	0.554 01.000	-
Nitrogen	0.00 0.15	mol/mol
Carbon dioxide	0.00 0.15	mol/mol

Function inputs and outputs

Function inputs	Remark	EU	Range	Defa	ult
Name	Optional tag name, tag description and tag group				
Pressure	Observed pressure	psig	040000	0	
Temperature	Observed temperature	°F	-250800	60	
Specific gravity	Ratio of density of gas and density of air at the applicable reference conditions of pressure and temperature, i.e. the <u>real</u> specific gravity (real relative density).at 60°F and 14.73 psia.	-	02	0	
Nitrogen	Mole fraction of nitrogen	mol/mol	01	0	
Carbon dioxide	Mole fraction of carbon dioxide	mol/mol	01	0	
Function outputs	Remark			EU	Fallback
Status	0: Normal 1: Input argument out of range 2: Calculation error				

2: Calculation error		
Note: value 1 is also reported when one of the intermediate results is out of limit.		
Compressibility factor at the observed temperature and pressure (Zf)	-	1
Compressibility factor at 60 °F and 14.7 psia (Zb)	-	1
Super-compressibility Fpv. Refer to section Calculations for ist definition.	-	1
0: All input values are within the 'Normal Range'	-	0
1: One or more input values are outside the 'Normal Range		
	Note: value 1 is also reported when one of the intermediate results is out of limit. Compressibility factor at the observed temperature and pressure (Zf) Compressibility factor at 60 °F and 14.7 psia (Zb) Super-compressibility Fpv. Refer to section Calculations for ist definition. 0: All input values are within the 'Normal Range'	Note: value 1 is also reported when one of the intermediate results is out of limit. Compressibility factor at the observed temperature and pressure (Zf) - Compressibility factor at 60 °F and 14.7 psia (Zb) - Super-compressibility Fpv. Refer to section Calculations for ist definition. - 0: All input values are within the 'Normal Range' -

Calculations

The AGA-NX-19 standard specifies the calculations of the supercompressibility Fpv, which is defined as follows:

$$Fpv = \sqrt{\frac{Zb}{Zf}}$$

Fpv	Supercompressibility
Zb	Compressibility at base conditions of 60 °F and 14.7 psia
Zf	Compressibility at flowing conditions, i.e. at the input temperature and pressure

The definition of the base compressibility factor when applying the AGA-NX19:1962 method for custody transfer is given in chapter 2 of [Miller:1996].

$$Zb = \left[\sqrt{1 + \frac{0.00132}{T^{3.25}}}\right]^{-2}$$

Where T = Tadj/500 with Tadj calculated in accordance with the AGA NX-19:1962 standard

fxNX19_M

The AGA NX-19 standard describes a method to calculate the super-compressibility for natural gases and was developed in 1962.

The 1962 standard describes a standard method for calculating the super-compressibility factor that is based on the actual pressure and temperature, the specific gravity and the mole fractions of the carbon dioxide and nitrogen.

The 1962 standard also specifies 3 alternate methods, which are based on a full compositional analysis (1st alternate method), the relationship between methane and specific gravity (2nd alternate method) and the relationship between the heating value and the specific gravity

The function only performs the standard method as specified by the standard and none of the alternate methods. The function provides the option to perform the PTB G9 correction instead of the 1962 standard method. This consists of the modified NX-19 method (NX-19-mod) per Herning & Wolowsky and the additional 'BR.KORR.3H' correction for highcaloric gases (gross heating value >= 39.8 MJ/m3). **NOTE**: the definition of the specific gravity as used in the standard is that of the ratio of the density of the gas to that of air at base conditions, so the <u>real</u> specific gravity or real relative density.

Compliance

- AGA Par Research Project NX-19 Manual for the Determination. of the Supercompressibility Factors for Natural Gas, 1962
- Berechnung von Realgasfaktoren und Kompressibilitätszahlen für Erdgas, Technische Richtlinie G9 der Physikalisch -Technische Bundesanstalt für meßgeräte für Gas (PTB), TRG 9 8/82

Boundaries

The following bounds apply for the input values. Using the standard for conditions that lie outside this range will yield to a higher uncertainty and is not recommended.

Input value	AGA-NX-19 (1962)	AGA-NX-19-mod	AGA-NX-19-mod.BR. KORR.3H	EU
Pressure	0350	0137.9	080	bar(a)
Temperature	-40115.6	-40115.6	030	°C
Relative density	0.554 01.000	0.5540.75	0.5540.691	-
Gross heating value	Not used	31.839.8	39.846.2	MJ/m3
Nitrogen	0.00 0.15	0.00 0.15	0.000.025	mol/mol
Carbon dioxide	0.00 0.15	0.00 0.15	0.000.07	mol/mol

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Pressure	Observed pressure	bar(a)	0200	1.01325
Temperature	Observed temperature	°C	-100300	0
Specific gravity	Ratio of density of gas and density of air at the applicable reference conditions of pressure and temperature, i.e. the <u>real</u> specific gravity (real relative density). If setting 'PTB G9 correction' is disabled the reference conditions are 60°F and 14.73 psia. Else the specific gravity value shall be at the applicable reference conditions of pressure and temperature.	-	02	0
Gross heating value	At the applicable reference conditions of pressure and temperature Only required when the 'PTB G9 correction' is enabled.	MJ/m3	0100	0
Nitrogen		mol/mol	01	0
Carbon dioxide		mol/mol	01	0
PTB G9 correction	Determines if the AGA-NX-19-mod / AGA-NX-19-mod.BR.KORR.3H is used instead of the AGA-NX-19-1962 standard calculation. 0: Disabled 1: Enabled	-		1

Function outputs	Remark	EU	Fallback
Status	0: Normal		
	1: Input argument out of range		
	2: Calculation error		
	3: No convergence		
	Note: value 1 is also reported when one of the intermediate results is out of limit.		
Compressibility factor		-	1
Range	0: All input values are within the 'Normal Range'	-	0
	1: One or more input values are outside the 'Normal Range		

Calculations

The calculations are as specified in the standards.

fxPeriodFWA

The function calculates a **f**low-**w**eighted **a**verage (FWA) for a particular period.

The function weights the input value with a flow increment and

updates the average accordingly. The flow increment is provided

by a 'TotalizerDelta' or 'TotalizerRate' function.

At the end of the period the current average is stored in the

previous value and the current value is reset to 0.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag prefix and retentive storage.				
Input value	Value to be averaged	Same as linked			
		cell			
Enabled	0: Disabled		EN		
	<> 0: Enabled				
Increment	Flow increment with which the input value is weighed.	Same as linked			
	Must refer to the corresponding output from a 'TotalizerRate' or 'TotalizerDelta'	cell			
	function				
	Negative values will be ignored.				
Period type	Type of period:		TYP		
	1: Second				
	2: Minute				
	3: Hour				
	4: Day				
	5: Week				
	6: Month				
	7: Quarter				
	8: Year				
Period count	Number of periods (e.g. 5 minutes, 8 hours)		CNT	11e11	
Period start	Absolute start date and time of the period. This will be used as the reference		START	<datetime></datetime>	
	point to calculate the next period rollover from.				
	The value may be defined in the past or the future. The next rollover period will be	2			
	calculated accordingly (so forwards or backwards in time).				
Function outputs	Remark EU		SW taq	Alarm	Fallback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current average	Average calculated over the current period.	Same as input 'Input value'	CUR		0
Previous average	Average of the previous period.	Same as input 'Input value'	PRV		0
Pre-previous average	Average of the pre-previous period (i.e. the period before	Same as input 'Input value'	PPRV		0
	the previous period).				

fxPeriodLatch

The function latches a value at the end of a repeating period of time.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag prefix and retentive storage.				
Input value	Value to be latched	Same as linked cell		Not applied	
Period type	Type of period:		TYP		
	1: Second				
	2: Minute				
	3: Hour				
	4: Day				
	5: Week				
	6: Month				
	7: Quarter				
	8: Year				
Period count	Number of periods (e.g. 5 minutes, 8 hours)		CNT	11e11	
Period start	Absolute start date and time of the period. This will be used as the reference		START	<datetime></datetime>	
	point to calculate the next period rollover from.				
	The value may be defined in the past or the future. The next rollover period				
	will be calculated accordingly (so forwards or backwards in time).				
Function outputs	Remark EU		SW ta	g Alarm	Fallback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current latch	Value that is latched at start of the current period (end of previous	Same as input 'Input value'	CUR		0
	period)				
Previous latch	Value that is latched at the start of the previous period	Same as input 'Input value'	PRV		0

fxPeriodMax

The function determines a maximum value over a particular period.

Function inputs	Remark				EU	SW tag	Range	Default
Name	Name used	d for tag prefix and r	etentive storage.					
Input value	Value for w	/hich the maximum l	nas to be determined		Same as linked cell			
Enabled	0:	Disabled				EN		
	<> 0:	Enabled						
Period type	Type of pe	riod:				TYP		
	1: Second							
	2: Minute							
	3: Hour							
	4: Day							
	5: Week							
	6: Month							
	7: Quarter							
	8: Year							
Period count	Number of	periods (e.g. 5 minu	ites, 8 hours)			CNT	11e11	
Period start	Absolute st	tart date and time o	f the period. This will be	used as the		START	<datetime></datetime>	
	reference p	point to calculate the	e next period rollover fro	m.				
	The value r	nay be defined in th	e past or the future. The	next rollover period				
	will be calc	ulated accordingly (so forwards or backward	ls in time).				
Function outputs	Rem	nark	EU		SW tag	Alarm	Fallba	ick

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current maximum	Maximum over the current period.	Same as input 'Input value'	CUR		0
Previous maximum	Maximum over the previous period.	Same as input 'Input value'	PRV		0
Pre-previous maximum	Maximum over the pre-previous period (period before the previous period).	Same as input 'Input value'	PPRV		0

fxPeriodMin

The function determines a minimum value over a particular period.

Function inputs	Remark		EU	SW tag	Range	Default
Name	Name u	sed for tag prefix and retentive storage.				
Input value	Value fo	or which the minimum has to be determined	Same as linked cell			
Enabled	0:	Disabled		EN		
	<> 0:	Enabled				
Period type	Type of	period:		ТҮР		
	1: Secor	nd				
	2: Minut	ie in the second s				
	3: Hour					
	4: Day					
	5: Week					
	6: Mont	h				
	7: Quart	er				
	8: Year					
Period count	Number	r of periods (e.g. 5 minutes, 8 hours)		CNT	11e11	
Period start	Absolut	e start date and time of the period. This will be used as the		START	<datetime></datetime>	
	referend	ce point to calculate the next period rollover from.				
	The valu	ie may be defined in the past or the future. The next rollover p	eriod			
	will be c	alculated accordingly (so forwards or backwards in time).				
		••				
Function outputs		Remark	EU	SW tag	Alarm	Fallback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current minimum	Minimum over the current period.	Same as input 'Input value'	CUR		0
Previous minimum	Minimum over the previous period.	Same as input 'Input value'	PRV		0
Pre-previous maximum	Minimum over the pre-previous period (i.e. period before the previous period).	Same as input 'Input value'	PPRV		0

fxPeriodTotal

The function accumulates a flow increment into a period total. At the end of the period the current total is stored into the previous value and the current value is reset to 0. The flow increment originates from a 'TotalizerRate' or

'TotalizerDelta' function.

Function inputs	Remark		EU	SW tag	Range	Defau
Name	Name used for tag prefix and retentive storage.					
Increment	Increment value to be added to the period total.		Same as linked		01e11	
	Negative values will be ignored, so the period to	tal will not decrease.	cell			
Enabled	0: Disabled			EN		
	1: Enabled					
Period type	Type of period:			ТҮР		
	1: Second					
	2: Minute					
	3: Hour					
	4: Day					
	5: Week					
	6: Month					
	7: Quarter					
	8: Year					
Period count	Number of periods (e.g. 5 minutes, 8 hours)			CNT	11e11	
Period start	Absolute start date and time of the period. This	will be used as the reference		START	<datetime></datetime>	
	point to calculate the next period rollover from.					
	The value may be defined in the past or the futur	e. The next rollover period will be				
	calculated accordingly (so forwards or backward	s in time).				
Rollover value	The period total will be reset to 0 when it reaches	s the rollover value	Same as input	ROVAL	01e15	1e12
			Increment			
Decimal places	Defines the number of decimal places for the cur	rent and previous total output		DECPLS	-110	-1
	values.					
	-1 means full precision (no rounding applied)					
Function outputs	Remark	EU	SW tag	Alarr	n Fallb	ack
Current total	Accumulated total for the current period	Same as input 'Increment'	CUR	-	0	
	•	•				

Current total	Accumulated total for the current period	Same as input 'Increment'	CUR	0
Previous total	Accumulated total for the previous period	Same as input 'Increment'	PRV	0
Rollover flag	Flag indicating a rollover to 0.			ROALM
	0: Off			
	1: On			
	Note: stays 'On' for one calculation cycle only).			
Pre-previous total	Accumulated total for the pre-previous period	Same as input 'Increment'	PPRV	0
	(i.e. the period before the previous period			

fxPeriodTWA

The function calculates a **t**ime-**w**eighted **a**verage (TWA) for a particular period. At the end of a period the current average is stored in the previous value and the current value is reset to 0. The function weights the input value with the time (in fact the actual calculation cycle time) and updates the average accordingly.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name used for tag prefix and retentive storage.				
Input value	Value to be averaged	Same as linked cell		-1e111e11	
Enabled	0: Disabled		EN		
	1: Enabled				
Period type	Type of period:		TYP		
	1: Second				
	2: Minute				
	3: Hour				
	4: Day				
	5: Week				
	6: Month				
	7: Quarter				
	8: Year				
Period count	Number of periods (e.g. 5 minutes, 8 hours)		CNT	11e11	
Period start	Absolute start date and time of the period. This will be used as the		START	<datetime< td=""><td>></td></datetime<>	>
	reference point to calculate the next period rollover from.				
	The value may be defined in the past or the future. The next rollover				
	period will be calculated accordingly (so forwards or backwards in				
	time).				
Function outputs	Remark EU	SI	<i>N</i> tag	Alarm	Fallback

Function outputs	Remark	EU	SW tag	Alarm	Fallback	
Current average	Average calculated over the current period	Same as input 'Input value'	CUR		0	
Previous average	Average of the previous period	Same as input 'Input value'	PRV		0	
Pre-previous average	Average of the pre-previous period (i.e. the period before the previous period)	Same as input 'Input value'	PPRV		0	

fxPeriodWatch

The function 'remembers' that a condition has been valid during a period of time.

A typical example is a transmitter that was overridden with a keypad value.

Function inputs	Remark	EU	SW tag	Range	Defau
Name	Name used for tag-prefix and retentive storage.				
Condition	The condition to be watched				
	0: Condition is not valid				
	<>0: Condition is valid				
Enabled	0: Disabled		EN		
	1: Enabled				
Period type	Type of period:		TYP		
	1: Second				
	2: Minute				
	3: Hour				
	4: Day				
	5: Week				
	6: Month				
	7: Quarter				
	8: Year				
Period count	Number of periods (e.g. 5 minutes, 8 hours)		CNT	11e11	
Period start	Absolute start date and time of the period. This will be used as the reference point to		START	<datetime< td=""><td>></td></datetime<>	>
	calculate the next period rollover from.				
	The value may be defined in the past or the future. The next rollover period will be				
	calculated accordingly (so forwards or backwards in time).				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Current watch	Indicates whether or not the condition has been valid during the current period:		CUR		0
	0: Not valid				
	1: Valid				
Previous watch	Indicates whether or not the condition has been valid during the previous period:		PRV		0
	0: Not valid				
	1: Valid				
Pre-previous watch	Indicates whether or not the condition has been valid during the pre-previous period		PPRV		0
	(period before the previous period):				
	0: Not valid				
	1: Valid				

fxPID

PID control is a generic method to control a process variable by means of a feedback control loop and is widely used in the industry.

A PID controller adjusts its control output by applying a Proportional, Integral and Derivative algorithm based on the error between the measured process variable and the desired setpoint.

The Proportional part of the algorithm determines the reaction to the current error. The Integral part reacts to the recent errors accumulated over a sliding time window, while the Derivative part reacts to the change rate of the error. The 3 actions are added up by applying individual weigh factors and the sum is used to adjust a control device, e.g. the position of a control valve.

NOTE: In flow measurement systems typically only PI control is applied, so the derivative action is disabled.

The PID function provides several features for enhanced PID control such as:

 In <u>cascade control</u> there are two PID control loops arranged with one loop controlling the set point of the other loop. Within the outer loop the primary physical parameter is controlled, such as fluid level or velocity. The inner loop reads the output of the outer loop as its set point and usually controls a more rapid changing parameter such as flow rate or acceleration.

- For systems with a slow responsiveness to disturbances or setpoint changes <u>feed forward control</u> may be beneficial. Besides of the closed PID loop an open feed-forward loop is added that reacts immediately to a change in process or setpoint value.
- The function provides the option for <u>bumpless transfers</u> between auto and manual mode and vice versa. The actual process value is copied into the required setpoint value while manual mode is enabled (<u>PV tracking</u>). When reverting to auto mode the process will stay on the current process value. For the same reason the actual output % is copied to the manual output % while Auto mode is enabled.
- When the control output reaches its limit (e.g. control valve is fully opened) there is the risk for wind-up of the integral part, because the error will continue to be integrated. This results in the integral part to become very large, so the error must have the opposite value for a long time before the control loop returns to normal. In order to avoid this windup (i.e. achieve <u>anti-windup</u>) the function compensates the integral part when the control output has reached its limit.
- To avoid that a change in setpoint value will result in an impulse in the control signal the function provides the feature to define a maximum for the setpoint <u>clamp rate</u> and the control output <u>slew rate</u>. The setpoint clamp rate causes the setpoint to change gradually until it has caught up with the required value. The slew rate directly limits the rate of change of the control output.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Process value	This represents the actual process value that is being controlled	EU			
Setpoint value	The control loop will try to achieve this input value provided that both the 'Manual mode'	EU			
-	and 'Cascade mode' are disabled.				
Proportional gain	Proportional gain factor	-			
Integral gain	Integral gain factor	s			
_	The value 0 disables the integral part of the PID algorithm				
Derivative gain	Derivative gain factor	s			
	The value 0 disables the derivative part of the PID algorithm				
Low scale value	Process / setpoint value that corresponds to 0% of the control output	EU			
High scale value	Process / setpoint value that corresponds to 100% of the control output	EU			
Reverse	Selects the direct or reverse action of control				0
	0: Forward-> Error = (PV - SP)				
	1: Reverse -> Error = (SP - PV)				
Manual mode	0: Disabled				0
	<> 0: Enabled				
	When this input is enabled the 'Control output %' is set to input 'Manual output %'.				
	When this input is disabled the PID algorithm is applied and either the 'Setpoint value' or				
	Cascade value' is used depending on the 'Cascade mode'.				
Manual output %	The control output % will be set this value when 'Manual mode' is enabled	%			0
Upwards SP clamp rate	The setpoint will not be allowed to increase faster than this limit	EU/s			0
	Enter 0 disable this feature				
Downwards SP clamp rate	The setpoint will not be allowed to decrease faster than this limit	EU/s			0
Upwards OP slew rate	The control output % will not be allowed to increase faster than this limit	%/s			0
Downwards OP slew rate	The control output % will not be allowed to decrease faster than this limit	%/s			0
Low limit value	The control output % will not be allowed to go below this limit	%			0
High limit value	The control output % will not be allowed to go above this limit	%			100
Manual at startup	Forces manual mode at restart of flow computer				0
	0: Disabled				
	1: Enabled				
Bumpless transfer	When this input is enabled bump-less transfers between auto and manual mode and vice				1
	versa will be performed.				
	When enabled and when the mode changes from manual to auto, input 'Setpoint value'				
	will be set to the scaled value that corresponds with the current control output %.				

Function inputs	Remark	EU	SW tag	Range	Defaul
	When the mode changes from auto to manual, then input 'Manual output %' will be set to				
	the current output %.				
	0: Disabled				
	<> 0: Enabled				
Permissive flag	When the Permissive flag is not set the output is forced to the 'Idle output %'				1
	This input can be used for user-defined logic				
	0: Disabled				
	<> 0 : Enabled				
Idle output %	Value used for control output when the PID permissive flag is not set				0
Cascade mode	0: Disabled				0
	<>0 : Enabled				
	When this input is enabled while Manual mode is disabled, the PID algorithm is applied				
	using the 'Cascade input %' (after scaling) as the set point value.				
Cascade input %	The control loop will try to achieve this input value (after scaling) provided that 'Manual	%			0
	mode' is disabled and 'Cascade mode' is enabled				
	Must be linked to the output 'Control output" of the primary PID controller.				
Tracking mode	0: Disabled				0
	<> 0: Enabled				
	This output is meant for cascade control. If this function acts as the primary (Master) PID				
	controller in a cascade configuration, this input needs to be connected to output				
	'Tracking mode' of the secondary (Slave) PID function.				
	This input tells this function that the secondary (Slave) PID function is not using its				
	Cascade input, but its Manual output % or Setpoint value instead. This allows the primary				
	PID function to track the secondary process or setpoint value enabling a bumpless				
	transfer between modes.				
	0: Disabled				
	<> 0 : Enabled				
Tracking value	This output is meant for cascade control. If this function acts as the primary (Master) PID	%			0
-	controller in a cascade configuration, this input needs to be connected to output				
	'Tracking value' of the secondary (Slave) PID function.				
	The value represents the process or setpoint value of the secondary (Slave) PID function				
	as percentage of scale.				
Feed forward	Value is directly added to the control output	%			0
	The advantage of feed forward control is that corrective action is taken for a change in a				
	disturbance input before it affects the controlled parameter.				
	· · · · · · · · · · · · · · · · · · ·				
Function outputs	Remark EU SW tag		Alarm	Fallba	ck
Control outputs	The actual output value as percentage of scale that shall be used %			i unda	
control output	for actual control.				
	Equals the required control output including the slew rate and				
	min/max limitations.				
Setpoint value	The actual setpoint in-use (may differ from the required setpoint EU				
Scipoliti value	because of the SP clamp rate)				
Tracking mode	0: Disabled				
Tracking mode					
	<> 0: Enabled				

	because of the SP clamp rate)
Tracking mode	0: Disabled
	<> 0: Enabled
	This output is meant for cascade control. If this function acts as the
	secondary (Slave) PID controller in a cascade configuration, this
	input needs to be connected to output 'Tracking mode' of the
	primary (Master) PID function
	This output tells the primary (Master) PID function that the Slave
	PID function is not using the Cascade input, but the Manual output
	% or Setpoint value instead. This allows the primary PID function
	to track the secondary process or setpoint value enabling a
	bumpless transfer between modes.
Tracking value	This output is meant for cascade control. If this function acts as the $$ %
	secondary (Slave) PID controller in a cascade configuration, this
	input needs to be connected to output 'Tracking value' of the
	primary (Master) PID function
	The value depends on the Manual and Cascade mode:
	If Manual mode is enabled, this output equals the percentage of
	scale of input 'Process value', else this output equals the
	percentage of scale of input 'Setpoint value'.
Error	Current error
Р	Current proportional part
I	Current integral part
D	Current derivative part
v	Required control output as percentage of scale (refer to section %
	calculations). This output is for information only and shall not be
	used for actual control

Logic

Symbols			
PV _{CUR}	process value in current cycle [EU]		
PVPREV	process value in previous cycle [EU]		
SPREQ	required setpoint value [EU]		
SPCUR	in-use setpoint value in current cycle [EU]		
SPPRV	in-use setpoint value in previous cycle [EU]		
e _{CUR}	error in current cycle [EU]		
eprv	error in previous cycle [EU]		
Δu	control output deviation value [%]		
VCUR	required control output value in current cycle [%]		
VPRV	required control output value in previous cycle [%]		
U _{CUR}	actual control output value in current cycle [%]		
UPRV	actual control output value in previous cycle [%]		
UMIN	low limit for control output [%]		
Имах	high limit for control output [%]		
Δt	calculation cycle time [s]		
Kp	Proportional gain factor		
Kı	Integral gain factor		
KD	Derivation gain factor		
Р	Proportional part of current cycle		
I _{CUR}	Integral part of current cycle		
IPRV	Integral part of previous cycle		
D	Derivative part of current cycle		

Control output logic

The logic for the control output depends on the current manual and tracking modes.

Manual mode = Enabled

Set current output equal to manual input value v_{CUR} = 'Manual output %'

Manual mode = Disabled AND Tracking mode = Enabled

Set current output equal to tracking input value v_{CUR} = 'Tracking value' (input)

Manual mode = Disabled AND Tracking mode = Disabled

Determine the current setpoint

If cascade mode enabled then

 $\mbox{SP}_{\mbox{CUR}}$ = Cascade input value * (High scale value - Low scale value) + Low scale value

Else

 $SP_{CUR} = SP_{REQ}$

Check if the current setpoint needs to be gradually ramped up or down to the required setpoint:

If $(SP_{CUR} - SP_{PRV}) > (Upwards SP clamp rate * \Delta t)$ then $SP_{CUR} = SP_{PRV} + (Upwards SP clamp rate * \Delta t)$

Else if (SP_{PRV} - SP_{CUR}) > (Downwards SP clamp rate * Δ t) **then**

 $SP_{CUR} = SP_{PRV}$ - (Downwards SP clamp rate * Δt)

Calculate the current error:

If Control direction = Forward then

 $e_{CUR} = SP_{CUR} - PV_{CUR}$

Else

 $e_{CUR} = PV_{CUR} - SP_{CUR}$

Calculate the Proportional part: $P = K_P * e_{CUR}$

Calculate the Integral part:

 $I_{CUR} = I_{PRV} + Ki * \Delta t * (e_{CUR} + (u_{PRV} - v_{PRV})*(High scale value - Low scale value)/100)$

NOTE: the latter part is required to avoid anti-windup.

Calculate the Derivative part: $D = Kd / \Delta t^* (e_{CUR} - e_{PRV})$

Calculate the required control output: v_{CUR} = [P + I_{CUR} + D - Low scale value] / [High scale vale – Low scale value]

Check if change in control output is within the slew rate If $v_{CUR} - u_{PRV} > Upwards$ slew rate * Δt then $u_{CUR} = u_{PRV} + (Upwards$ slew rate * Δt) Else if $\Delta u < - (Downwards$ slew rate * Δt) then $u_{CUR} = u_{PRV} - (Downwards$ slew rate * Δt) Else

U_{CUR} = V_{CUR}

Check if new control output is outside its limits If $u_{CUR} > u_{MAX}$ then $u_{CUR} = u_{MAX}$ Else If $u_{CUR} < u_{MIN}$ then $u_{CUR} = u_{MIN}$

Bumpless transfer logic

If bumpless transfer is enabled, then the following logic is applied.

Setpoint tracking

IF Manual mode = Enabled OR Tracking mode = Enabled SP_{REQ} = PV_{CUR}

ELSE IF Cascade mode = Enabled SP_{REQ} = SP_{CUR}

e. REQ E. COR

Manual output tracking

IF Manual mode = Disabled 'Manual output %' = u_{CUR}

Tracking mode and value

Outputs 'Tracking mode' and 'Tracking value' are set as follows:

Tracking mode

'Tracking mode' = ('Manual mode' = Enabled) OR ('Cascade mode' = Disabled)

Tracking value

IF 'Manual mode' = Enabled

'Tracking value' = (PV_{CUR} * - Low scale value) / (High scale value - Low scale value) * 100

IF 'Manual mode' = Disabled

'Tracking value' = (SP_{CUR} * - Low scale value) / (High scale value - Low scale value) * 100

fxROCAlarm

The function checks if a value does not change its value at a rate that is higher than a specific limit ('rate of change').

Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Defaul
Name	Optional tag name, tag description and tag group				
Input value	Must be linked to another cell	Same as linked cell		-1e111e11	0
Rate of change limit	The unit depends on the 'Deviation type'	Absolute: Same as input value 1 / s	ROCLIM	01e11	0
		Relative : % /s			
Enabled	Enables or disabled the alarm			True or false	True
Alarm type	1: Alarm				1
	2: Warning				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Rate of change alarm	0: Normal	-	ROCALM	ROCALM	
	1: Alarm				

Logic

A 'Rate of change alarm' is raised when the absolute difference between two consecutive values divided by the calculation cycle time in seconds is more than the limit.

fxSarasota_C

The function calculates the density from a frequency input signal provided by a Sarasota densitometer and corrects it for temperature and pressure effects in **US customary** units. Note: The calibration constants also need to be in US customary units (°F, psi and lbm/ft3).

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Periodic time	In microseconds	μs		01e6	0
	Equals 1000 divided by the frequency in [Hz]				
Line temperature	Used when temperature correction is enabled	°F		-273.15+500	20
Line pressure	Used when pressure correction is enabled	psig		0200	0
Temperature correction	0: Disabled	-	TEMPCOR		1
	1: Enabled				
Pressure correction	0: Disabled	-	PRESCOR		1
	1: Enabled				
Reference temperature	Used when temperature correction is enabled	°F	REFTEMP	0100	20
Reference pressure	Used when pressure correction is enabled	psig	REFPRES	0100	0
do	Constant from calibration certificate	lbm/ft3	D0	02000	0
	Note: value required in lbm/ft3				
το	Constant from calibration certificate	μs	то	01e6	0
К	Spool calibration constant from calibration certificate	-	К	03e3	0
Temperature coefficient	Constant from calibration certificate	μs/°F	TEMPCOEF	-1e61e6	0
Pressure coefficient	Constant from calibration certificate	μs/psi	PRESCOEF	-1e61e6	0

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
Corrected density	Density corrected for temperature and pressure	lbm/ft3	CORDENS		0

Calculations

The corrected density ρ_{C} is calculated by

$$\rho_{c} = d_{0} \cdot \frac{\tau - \tau_{c}}{\tau_{c}} \cdot \left(2 + K \cdot \frac{\tau - \tau_{c}}{\tau_{c}}\right)$$

$$\tau_{c} = \tau_{0} + t_{COEF} \cdot (t - t_{CAL}) + p_{COEF} \cdot (p - p_{CAL})$$

ρο	The corrected density	lbm/ft3
do	Obtained from the calibration certificate	lbm/ft3
τ0	Obtained from the calibration certificate	μs
К	Obtained from the calibration certificate	-
PCOEF	Obtained from the calibration certificate	µs/psi
tcoef	Obtained from the calibration certificate	μs/°F
t	Line temperature	°F
tcal	Reference temperature	°F
р	Line temperature	psig
PCAL	Reference pressure	psig
τ _c	Time periodic input corrected for temperature and	μs
	pressure	
τ	Measured time period	μs

fxSarasota_M

The function calculates the density from a frequency input signal provided by a Sarasota densitometer and corrects it for temperature and pressure effects in **metric** units. Note: Calibration constants also need to be in metric units (°C,

bar and kg/m3).

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Periodic time	In microseconds.Equals 1000 divided by the frequency in [Hz]	μs	01e6	0
Line temperature	Used when temperature correction is enabled	°C	-273.15+500	20
Line pressure	Used when pressure correction is enabled	bar(g)	0200	0
Temperature correction	0: Disabled	-		1
	1: Enabled			
Pressure correction	0: Disabled	-		1
	1: Enabled			
Reference temperature	Used when temperature correction is enabled	°C	0100	20
Reference pressure	Used when pressure correction is enabled	bar(g)	0100	0
d0	Constant from calibration certificate	kg/m3	03000	0
τ0	Constant from calibration certificate	μs	01e6	0
к	Spool calibration constant from calibration certificate	-	03e3	0
Temperature coefficient	Constant from calibration certificate	μs/°C	-1e61e6	0
Pressure coefficient	Constant from calibration certificate.	μs/bar	-1e61e6	0
	Note: value required in μs/bar			
Frank and a second second a	Beneral El			- III I.

Function outputs	Remark	EU		Fallback
Status	0: Normal	STS		
	1: Input argument out of range		FIOOR	
	Outputs will be set to fallback values			
	2: Calculation error		CALC	
	Outputs will be set to fallback values			
Corrected density	Density corrected for temperature and pressure	kg/m3	CORDENS	0

Calculations

The corrected density ρ_{C} is calculated by

$$\rho_{c} = d_{0} \cdot \frac{\tau - \tau_{c}}{\tau_{c}} \cdot \left(2 + K \cdot \frac{\tau - \tau_{c}}{\tau_{c}}\right)$$
$$\tau_{c} = \tau_{0} + t_{COEF} \cdot \left(t - t_{CAL}\right) + p_{COEF} \cdot \left(p - p_{CAL}\right)$$

V	V	ł	۱	e	r	e	:	

ρς	The corrected density	kg/m3
do	Obtained from the calibration certificate	kg/m3
τ0	Obtained from the calibration certificate	μs
К	Obtained from the calibration certificate	-
do	Obtained from the calibration certificate	-
PCOEF	Obtained from the calibration certificate	µs/bar
tcoef	Obtained from the calibration certificate	μs/°C
t	Line temperature	°C
t _{CAL}	Reference temperature	°C
р	Line temperature	bar(g)
PCAL	Reference pressure	bar(g)
τς	Time periodic input corrected for temperature and	μs
	pressure	
τ	The time period in µS	μs

fxSetOnChange

The 'fxSetOnChange function sets a tag or cell to a specific value whenever another value changes

Function inputs	Remark	EU	SW tag	Range	Default
Module	Number of the Flow-X/M module.			-18	
	-1 : local module				
	18 : module 1 through 8				
Target	The cell or tag that has to be set. This must be a direct reference to a cell.				
Value	Value to be assigned. May be a constant a formula or a reference to another cell or tag.				
Change	A change if this value will set the Target to the Value. This must be a direct reference to a cell.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Date and time	Date and time that the most recent change has occurred				

fxSetOnCondition

The 'fxSetOnCondition' function sets a tag or cell to a specific value whenever a condition is true. It is a generic function that is especially useful for implementing logic for controlling output signals (e.g. valve commands) and state machines (e.g. prove sequences).

Function inputs Remark EU SW tag Range Default Module Number of the Flow-X/M module. -1..8 -1 : local module 1..8 : module 1 through 8 Target The cell or tag that has to be set. This must be a direct reference to a cell. Value Value to be assigned. May be a constant a formula or a reference to another cell or tag. Condition Boolean expression. When the expression outcome is TRUE (<> 0), then the target is set to the value. Function outputs Remark EU SW tag Alarm Fallback Date and time that the most recent event has occurred Date and time

fxSetOnEvent

The 'fxSetOnEvent' function sets a tag to a specific value whenever an event occurs.

It is a generic function that is especially useful for implementing logic for controlling output signals (e.g. valve commands) and state machines (e.g. prove sequences).

Function inputs	Remark		EU	SW tag	Range	Default
Module	Number of the Flow-X/M module.				-18	-1
	-1 : local module					
	18 : module 1 through 8					
Target	The cell or tag that has to be set. This must be a direct reference to	a cell.				
Value	Value to be assigned. May be a constant a formula or a reference to	another cell o	or tag.			
Event	Boolean expression.					
	When the expression outcome changes from FALSE to TRUE (or from	n 0 to <> 0),	then the			
	target is set to the value.					
Condition	Optional condition that needs to be valid while the event occurs.					TRUE
	If the condition is not valid, then teh target will not be set to the val	Je.				
Function outputs	Remark	EU	SW tag	Alarm	Fallt	back
Date and time	Date and time that the most recent event has occurred		2			

fxSetIndexOnChange

The 'fxSetIndexOnChange function sets one tag from an array of tags to a specific value whenever another value changes.

Function inputs	Remark	EU	SW tag	Range	Default
Module	Number of the Flow-X/M module.			-18	-1
	-1 : local module				
	18 : module 1 through 8				
Index	The index number of the target tag to be set				
Value	Value to be assigned. May be a constant a formula or a reference to another cell or tag.				
Change	A change if this value will set the Target to the Value. This must be a direct reference to a cell.				
Target 1	The tag that has to be set when the index number is 1. This must be a direct reference to a cell.				
Target 2	The tag that has to be set when the index number is 2. This must be a direct reference to a cell.				
etc.					

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Date and time	Date and time that the most recent change has occurred				

fxSetIndexOnCondition

The 'fxSetIndexOnCondition' function sets one tag from an array of tags to a specific value whenever a condition is true. It is a generic function that is especially useful for implementing

logic for controlling output signals (e.g. valve commands) and

state machines (e.g. prove sequences).

Function inputs	Remark	EU	SW tag	Range	Default
Module	Number of the Flow-X/M module.			-18	-1
	-1 : local module				
	18 : module 1 through 8				
Index	The index number of the target tag to be set				
Value	Value to be assigned. May be a constant a formula or a reference to another cell or tag.				
Condition	Boolean expression.				
	When the expression outcome <u>is</u> TRUE (<> 0), then the target is set to the value.				
Target 1	The tag that has to be set when the index number is 1. This must be a direct reference to a cell.				
Target 2	The tag that has to be set when the index number is 2. This must be a direct reference to a				
-	cell.				
etc.					
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Date and time	Date and time that the most recent event has occurred				

fxSetIndexOnEvent

The 'fxSetIndexOnEvent' function sets one tag from an array of tags to a specific value whenever an event occurs. It is a generic function that is especially useful for implementing logic for controlling output signals (e.g. valve commands) and state machines (e.g. prove sequences).

Function inputs	Remark	EU	SW tag	Range	Default
Module	Number of the Flow-X/M module.			-18	-1
	-1 : local module				
	18 : module 1 through 8				
Index	The index number of the target tag to be set				
Value	Value to be assigned. May be a constant a formula or a reference to another cell or tag.				
Event	Boolean expression.				
	When the expression outcome <u>changes</u> from FALSE to TRUE (or from 0 to <> 0), then the target				
	is set to the value.				
Condition	Condition that needs to be valid while the event occurs.				
	If the condition is not valid, then the target will not be set to the value.				
Target 1	The tag that has to be set when the index number is 1. This must be a direct reference to a cell.				
Target 2	The tag that has to be set when the index number is 2. This must be a direct reference to a cell.				
etc.					

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Date and time	Date and time that the most recent event has occurred				

fxSGERG_C

This function performs the SGERG calculation in **USC** units.

The Standard (or Simplified) GERG TM5 1991 Virial Equation (SGERG or SGERG-88) has defines a method to calculate the Compressibility Factor (Z) for Natural Gases. The SGERG calculation is equivalent to the AGA8 Gross Characterisation Method, however .the results are slightly different

Instead of the full compositional analysis (as used by the AGA 8 Detailed Characterization method), the Gross Characterisation Method (SGERG) uses a restricted set of input variables for its equation, comprising Relative Density, Superior Calorific Value, Carbon Dioxide and Nitrogen together with pressure and temperature.

Compliance

• GERG Technical Monograph 5, Standard GERG Virial Equation, 1991

Boundaries

The standard specifies a maximum uncertainty of the compressibility factor of 0.1% provided the inputs lie in the following range.

<u>· · · · · · · · · · · · · · · · · · · </u>		
Pressure	01740	psi(a)
Temperature	17 143	°F
Gross heating value	509 1288	Btu/ft3
Relative density	0.55 0.90	-
Carbon dioxide	0.00 0.30	mol/mol
Nitrogen	0.00 0.50	mol/mol
Hydrogen	0.00 0.10	mol/mol

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Pressure	Observed pressure	psia	030000	
Temperature	Observed temperature	°F	-250500	0
Relative density	At the reference conditions according to input 'Reference conditions'	-	02	0
Gross heating value	At the combustion and reference conditions according to input 'Reference conditions'	Btu/ft3	02500	0
Nitrogen		mol/mol	01	0
Carbon dioxide		mol/mol	01	0
Hydrogen		mol/mol	01	0
Method	Calculation method:	-		0
	1: All inputs are known			
	2: Unknown Nitrogen mole fraction			
	3: Unknown Carbon Dioxide mole fraction			
	4: Unknown Gross Heating Value			
	5: Unknown Relative Density			
Reference conditions	Reference conditions that correspond with the values of inputs 'Relative density' and 'Gross			1
	heating value'.			
	Combustion temp. / metering temp. / pressure			
	1: 60°F / 60 °F / 14.73 psia			
	2: 60 °F / 60 °F / 1.01592 bar			
	Note: the calculations are based on 25°C / 0°C / 1.01325 bar(a). For the other conditions conversion			
	factors are applied as specified in GERG Technical Monograph 5, Standard GERG Virial Equation,			
	1991.			
	Refer to section 'Calculations' for more details			

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Compressibility factor		-			1
Molar mass		lb/lbmol			0
Range	0: In Normal Range		RANGE		0
	All components are within the 'Normal Range'				
	1: In Extended Range				
	One or more components within the 'Extended Range, but none of the components				
	outside the Extended rang (outputs values have higher uncertainty)				
	2: Out of Range				
	One or more components outside the 'Extended Range' (using the AGA8 calculation is				
	not recommended in this case)			OOR	

Calculations

The calculations are in accordance with the standard.

As specified in the standard and depending on the selected reference conditions (input 'Reference conditions') one of the following set of conversions is carried out to obtain the input values of the relative density (RD) at 0°C and 1.01325 bar(a) and

the gross heating value (GHV) at 25°C and 1.01325 bar(a) combustion and 0°C and 1.01325 bar(a) metering conditions.

Input 'Reference Conditions'	Multiply input GHV with	Multiply input RD with
60 °F, 60 °F @ 14.73 psia	1.0543/26.85	1.0002
60 °F, 60 °F @ 1.01592 bar(a)	1.0543/26.86	1.0002

fxSGERG_M

Description

This function performs the SGERG calculation in **metric** units. The Standard (or Simplified) GERG TM5 1991 Virial Equation (SGERG or SGERG-88) has defines a method to calculate the Compressibility Factor (Z) for Natural Gases. The SGERG calculation is equivalent to the AGA8 Gross Characterisation Method, however .the results are slightly different Instead of the full compositional analysis (as used by the AGA 8 Detailed Characterization method), the Gross Characterisation Method (SGERG) uses a restricted set of input variables for its equation, comprising Relative Density, Superior Calorific Value, Carbon Dioxide and Nitrogen together with pressure and temperature.

Compliance

• GERG Technical Monograph 5, Standard GERG Virial Equation, 1991

Boundaries

The standard specifies a maximum uncertainty of the compressibility factor of 0.1% provided the inputs lie in the following range

Pressure	0120	bar(a)
Temperature	265335	К
Gross heating value	19 48	MJ/m3
Relative density	0.55 0.90	-
Carbon dioxide	0.00 0.30	mol/mol
Nitrogen	0.00 0.50	mol/mol
Hydrogen	0.00 0.10	mol/mol

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Pressure	Observed pressure	bar(a)	02000	1.01325
Temperature	Observed temperature	°C	-200300	0
Relative density	At the reference conditions according to input 'Reference conditions'	-	02	0
Gross heating value	At the combustion and reference conditions according to input 'Reference conditions'	MJ/m3	0100	0
Nitrogen		mol/mol	01	0
Carbon dioxide		mol/mol	01	0
Hydrogen		mol/mol	01	0
Method	Calculation method:	-		0
	1: All inputs are known			
	2: Unknown Nitrogen mole fraction			
	3: Unknown Carbon Dioxide mole fraction			
	4: Unknown Gross Heating Value			
	5: Unknown Relative Density			
Reference conditions	Reference conditions that correspond with the values of inputs 'Relative density' and 'Gross			1
	heating value'.			
	Combustion temp. / metering temp. / pressure			
	1: 25°C / 0°C / 1.01325 bar(a)			
	2: 0°C / 0 °C / 1.01325 bar(a)			
	3: 15°C / 15°C / 1.01325 bar(a)			
	Note: the calculations are based on 25°C / 0°C / 1.01325 bar(a). For the other conditions			
	conversion factors are applied as specified in GERG Technical Monograph 5, Standard GERG			
	Virial Equation, 1991.			
	Refer to section 'Calculations' for more details			

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
	3: No convergence			NOCONV	
Compressibility factor		-			1
Molar mass		kg/kmol			0
Range	0: In Normal Range		RANGE		0
	All components are within the 'Normal Range'				
	1: In Extended Range				
	One or more components within the 'Extended Range, but none of the components				
	outside the Extended rang (outputs values have higher uncertainty)				
	2: Out of Range				
	One or more components outside the 'Extended Range' (using the AGA8 calculation is not recommended in this case)				
	·			OOR	

Calculations

The calculations are in accordance with the standard.

As specified in the standard and depending on the selected reference conditions (input 'Reference conditions') one of the following set of conversions is carried out to obtain the input values of the relative density (RD) at 0°C and 1.01325 bar(a) and the gross heating value (GHV) at 25°C and 1.01325 bar(a)

combustion and $0\,^{\circ}\text{C}$ and 1.01325 bar(a) metering conditions.

Input 'Reference Conditions'	Multiply input GHV with	Multiply input RD with
25°C / 0 °C / 1.01325 bar(a)	Not applicable	Not applicable
0 °C, 0 °C @ 1.01325 bar(a)	0.9974	Not applicable
15 °C, 15°C @ 1.01325 bar(a)	1.0543	1.0002

fxSolartron_Gas_C

The function calculates the density from a frequency input signal provided by a Solartron 7810, 7811 or 7812 gas densitometer and corrects it for temperature and velocity of sound effects in **US customary** units.

The function requires that the calibration constants are based on the following units:

°F

- Temperature
- Pressure psi
- Density g/cc

Compliance

The calculations are in accordance with documents:

- 78125010 'Solartron 7812 Gas Density Transducer Manual', 2001.
- 78125040 Rev. C, 'Micro Motion 7812 Gas Density Meter', October 2007.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Periodic time	In microseconds	μs		01e6	0
	Equals 1000 divided by the frequency in [Hz]				
Line temperature	Used when temperature correction is enabled	°F		-459.67+1000	20
Temperature correction	0: Disabled	-	TEMPCOR		1
	1: Enabled				
VOS correction	0: Disabled	-	VOSCOR		1
	1: Enabled				
Reference temperature	Used when temperature correction is enabled	°F	REFTEMP	0200	60
ко	Constant K0 from calibration certificate	-	К0	-1e91e9	
K1	Constant K1 from calibration certificate	-	K1	-1e91e9	
К2	Constant K2 from calibration certificate	-	K2	-1e91e9	
K18	Constant K18 from calibration certificate	-	K18	-1e91e9	
K19	Constant K19 from calibration certificate	-	K19	-1e91e9	
К3	Constant K3 from calibration certificate	-	K3	-1e91e9	
K4	Constant K4 from calibration certificate	-	K4	-1e91e9	
Calibration gas constant	Constant Kc from calibration certificate	-	KC	-1e91e9	
G value method	Method of determining value G, which is the ratio of Gas Specific Gravity	-	GMETHOD		1
	and the Ratio of Specific Heats				
	1: Use input 'G value'				
	2: Uses ratio of inputs				
	Uses the ratio of inputs 'Specific Gravity' and 'Ratio of Specific Heats'				
G value	Value will be used when VOS correction is enabled and the G value method	-	GVAL		
	is 'Use input G value'				
Specific gravity	Value will be used when VOS correction is enabled and the G value method	-	SG	02	0
	is 'Use ratio of inputs'				
Ratio of specific heats	Value will be used when VOS correction is enabled and the G value method	-	CP_CV	0.0110	0
	is 'Use ratio of inputs'				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Corrected density	Density corrected for temperature and VOS	lbm/ft3	CORDENS		0
Density corrected for temperature	Density corrected for temperature	lbm/ft3	TCORDENS		0
Uncorrected density	Uncorrected (indicated density	lbm/ft3	UNCDENS		0

Calculations

Density calculations are performed in g/cc, while the function outputs are in lbm/ft3

The uncorrected density $\rho_{\rm i}$ is calculated by

$$\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$$

Where:

ρι	The uncorrected density	g/cc
K0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	The time period in μS	μs

The temperature corrected density pt is calculated by

$$\rho_t = \rho_i \cdot \left[1 + K18 \cdot \left(t - t_R\right)\right] + K19 \cdot \left(t - t_R\right)$$

Wher	Where:				
ρt	The density corrected for temperature	g/cc			
K18	Obtained from the calibration certificate	-			
K19	Obtained from the calibration certificate	-			
t	The line temperature	°F			
t _R	The reference temperature	°F			

The density value corrected for Velocity of Sound is calculated as follows:

$$\rho_{VOS} = \rho_t \left[1 + \frac{K_3}{(\rho_t + K_4)} \cdot \left(Kc - \frac{G}{t + 273} \right) \right]$$
$$Kc = \frac{Cc}{t_c + 273}$$

W	he	er	e

ρvos	The density corrected for temperature and VOS	g/cc
K3	Obtained from the calibration certificate	-
K4	Obtained from the calibration certificate	-
Kc	Calibration gas constant from the calibration certificate	-
G	G value. Equals either input 'G value' or the ratio of inputs 'Specific gravity' and 'Ratio of specific heats', depending on input 'G value method'	-
t	The line temperature	°F
Cc	Specific Gravity/Ratio of specific heats of calibration gas	-
tc	Calibration temperature	°F

fxSolartron_Gas_M

The function calculates the density from a frequency input signal provided by a Solartron 7810, 7811 or 7812 gas densitometer and corrects it for temperature and velocity of sound effects in **metric** units.

The function requires that the calibration constants are based on the following units:

°C

Temperature

Pressure bar

Density kg/m3

Compliance

The calculations are in accordance with documents:

- 78125010 'Solartron 7812 Gas Density Transducer Manual', 2001.
- 78125040 Rev. C, 'Micro Motion 7812 Gas Density Meter', October 2007.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Periodic time	In microseconds	μs		01e6	0
	Equals 1000 divided by the frequency in [Hz]				
Line temperature	Used when temperature correction is enabled	°C		-273+500	20
Temperature correction	0: Disabled	-	TEMPCOR		1
	1: Enabled				
VOS correction	0: Disabled	-	VOSCOR		1
	1: Enabled				
Reference temperature	Used when temperature correction is enabled	°C	REFTEMP	0100	20
KO	Constant K0 from calibration certificate	-	К0	-1e91e9	-1.104252E+2
K1	Constant K1 from calibration certificate	-	K1	-1e91e9	-1.882012E-2
K2	Constant K2 from calibration certificate	-	K2	-1e91e9	4.749797E-4
K18	Constant K18 from calibration certificate	-	K18	-1e91e9	-1.360E-5
K19	Constant K19 from calibration certificate	-	K19	-1e91e9	8.440E-4
K3	Constant K3 from calibration certificate	-	К3	-1e91e9	354
K4	Constant K4 from calibration certificate	-	K4	-1e91e9	57.4
Calibration gas constant	Constant Kc from calibration certificate	-	КС	-1e91e9	0.00236
G value method	Method of determining value G, which is the ratio of Gas Specific Gravity and	-	GMETHOD		1
	the Ratio of Specific Heats				
	1: Use input 'G value'				
	2: Uses ratio of inputs				
	Uses the ratio of inputs 'Specific Gravity' and 'Ratio of Specific Heats'				
G value	Value will be used when VOS correction is enabled and the G value method is	-	GVAL	0100	0
	'Use input G value'				
Specific gravity	Value will be used when VOS correction is enabled and the G value method is	-	SG	02	0
	'Use ratio of inputs'				
Ratio of specific heats	Value will be used when VOS correction is enabled and the G value method is	-	CP_CV	010	0
	'Use ratio of inputs'				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Corrected density	Density corrected for temperature and VOS	kg/m3	CORDENS		0
Density corrected for temperature	Density corrected for temperature	kg/m3	TCORDENS		0
Uncorrected density	Uncorrected (indicated density	kg/m3	UNCDENS		0

Calculations

The uncorrected density $\rho_{\rm i}$ is calculated by

$$\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$$

Where:

ρι	The uncorrected density	kg/m3
К0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	The time period in μs	μs

The temperature corrected density pt is calculated by

$$\rho_{t} = \rho_{i} \cdot \left[1 + K18 \cdot \left(t - t_{R}\right)\right] + K19 \cdot \left(t - t_{R}\right)$$

Where:			
ρ _t	The density corrected for temperature	kg/m3	
K18	Obtained from the calibration certificate	-	
K19	Obtained from the calibration certificate	-	
t	The line temperature	°C	
t _R	The reference temperature	°C	

The density value corrected for Velocity of Sound is calculated as follows:

$$\rho_{VOS} = \rho_t \left[1 + \frac{K_3}{(\rho_t + K_4)} \cdot \left(Kc - \frac{G}{t + 273} \right) \right]$$
$$Kc = \frac{Cc}{t_c + 273}$$

Where:

•

ρvos	The density corrected for temperature and VOS	kg/m3
К3	Obtained from the calibration certificate	-
K4	Obtained from the calibration certificate	-
Kc	Calibration gas constant from the calibration certificate	-
G	G value. Equals either input 'G value' or the ratio of inputs 'Specific gravity' and 'Ratio of specific heats', depending on input 'G value method'	-
t	The line temperature	°C
Cc	Specific Gravity/Ratio of specific heats of calibration gas	-
tc	Calibration temperature	°C

Compliance

The calculations are in accordance with documents:

Liquid Density Transducer', October 2007

Density Transducer Manual', 2001

• 78355010 'Solartron 7835, 7845, 7846 & 7847 Advanced Liquid

• 78355080, Rev. C, 'Micro Motion 7835, 7845, 7846 & 7847

fxSolartron_Liquid _C

The function calculates the density from a frequency input signal provided by a Solartron 7835, 7845, 7846 or 7847 liquid densitometer and corrects it for temperature, pressure and velocity of sound effects using **US Customary** units. The function requires that the calibration constants are based on the following units:

•	Temperature	°F
•	remperature	

- Pressure psi
- Density g/cc

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Periodic time	In microseconds	μs	01e6	0
	Equals 1000 divided by the frequency in [Hz]			
Line temperature	Used when temperature correction is enabled	°F	-459.67+100	0
Line pressure	Used when pressure correction is enabled	psig	03000	0
Temperature correction	0: Disabled	-		1
	1: Enabled			
Pressure correction	0: Disabled	-		1
	1: Enabled			
VOS correction	0: Disabled	-		2
	1: Based on Kr / Kj Constants			
	Solartron manual edition 1985			
	2: Based on VOS value			
	Solartron manual edition 1996 and later			
Reference temperature	Used when temperature correction is enabled	°F	0200	60
Reference pressure	Used when pressure correction is enabled	psig	01500	0
ко	Constant from calibration certificate	-	-1e91e9	
K1	Constant from calibration certificate	-	-1e91e9	
K2	Constant from calibration certificate	-	-1e91e9	
K18	Constant from calibration certificate	-	-1e91e9	
K19	Constant from calibration certificate	-	-1e91e9	
K20A	Constant from calibration certificate	-	-1e91e9	
K20B	Constant from calibration certificate	-	-1e91e9	
K21A	Constant from calibration certificate	-	-1e91e9	
K21B	Constant from calibration certificate	-	-1e91e9	
Kr	Used when VOS method is set to 'Based on Kr / Kj Constants'.	-		
	Constant needs to be obtained from Solartron			
Кј	Used when VOS method is set to 'Based on Kr / Kj Constants'.	lbm/ft3		
-	Constant needs to be obtained from Solartron	-		
Liquid VOS	Velocity of sound of liquid	ft/s		
-	Used when VOS method is set to ' Based on VOS value'	-		
Eunction outputs	Pemark	FII SW tag	Alarm	Fallback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Corrected density	Density corrected for temperature, pressure and VOS	lbm/ft3	CORDENS		0
Density corrected for temperature		lbm/ft3	TCORDENS		0
Density corrected for temperature and		lbm/ft3	PTCORDENS		0
pressure					
Uncorrected density		lbm/ft3	UNCDENS		0

Calculations

Where:

Density calculations are performed in g/cc and m/s, while the function inputs and outputs are in lbm/ft3 and ft/s

ρι	The indicated density	g/cc
К0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	The time period in μS	μs

The temperature corrected density pt is calculated by

$$\rho_t = \left[\rho_i \cdot \left[1 + K18 \cdot \left(t - t_R\right)\right] + K19 \cdot \left(t - t_R\right)\right]$$

 $\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$

The indicated density $\rho_{i} \text{ is calculated by}$

156

Where:		
The density corrected for temperature	g/cc	
Obtained from the calibration certificate	-	
Obtained from the calibration certificate	-	
The line temperature	°F	
The reference temperature	°F	
	The density corrected for temperature Obtained from the calibration certificate Obtained from the calibration certificate The line temperature	

The pressure and temperature corrected density ρ_{PT} is calculated by

$$\rho_{pt} = \left[\rho_t \cdot \left[1 + K20 \cdot (p - p_{REF})\right] + K21 \cdot (p - p_{REF})\right]$$

$$K20 = K20A + K20B \cdot (p - p_{REF})$$

$$K21 = K21A + K21B \cdot (p - p_{REF})$$

Where:

ρ_{pt}	The density corrected for pressure and temperature	g/cc
K20A	Obtained from the calibration certificate	-
K20B	Obtained from the calibration certificate	-
K21A	Obtained from the calibration certificate	-
K21B	Obtained from the calibration certificate	-
р	The line pressure	psig
pr	The reference pressure	psig

When 'VOS Correction' is set to '<u>Based on Kr and Kj Constants</u>' the following correction for velocity of sound is applied:

$$\rho_{VOS} = \rho_{pt} + K_{r} \cdot (\rho_{pt} - K_j)^3$$

When 'VOS Correction' is set to '<u>Based on VOS value</u>', the following correction for velocity of sound is applied:

$$\rho_{VOS} = \rho_{pt} \cdot \left[1 + \frac{1.4e^6}{1000 \cdot \rho_{pt} + 1.4} \cdot \left(\frac{1}{V_C^2} + \frac{1}{V_A^2} \right) \right]$$

When 0.3 <= ρ_{pt} <= 1.1:

$$V_C = \left(100 + 1455 \cdot \rho_{pt}\right)$$

When 1.1 < ρ_{pt} <= 1.6:

$$V_{c} = 2690 - 900 \cdot \rho_{pt}$$

Else (ρ_{pt} < 0.3 or ρ_{pt} > 1.4) the VOS of sound correction is not performed.

ρvos	The density corrected for temperature	g/cc
Kr	Constant obtained from Solartron	-
Kj	Constant obtained from Solartron	g/cc
Vc	Calibration VOS	m/s
VA	Liquid VOS	m/s

fxSolartron_Liquid_M

The function calculates the density from a frequency input signal provided by a Solartron 7835, 7845, 7846 or 7847 liquid densitometer and corrects it for temperature, pressure and velocity of sound effects using **metric** units.

The function requires that the calibration constants are based on the following units:

- Temperature °C
- Pressure bar
- Density kg/m3

Function inputs and outputs

Compliance

The calculations are in accordance with documents:

- 78355010 'Solartron 7835, 7845, 7846 & 7847 Advanced Liquid Density Transducer Manual', 2001
- 78355080, Rev. C, 'Micro Motion 7835, 7845, 7846 & 7847 Liquid Density Transducer', October 2007

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Periodic time	In microseconds	μs	01e6	0
	Equals 1000 divided by the frequency in [Hz]			
Line temperature	Used when temperature correction is enabled	°C	-273.15+500	0
Line pressure	Used when pressure correction is enabled	bar(g)	0200	0
Temperature correction	0: Disabled	-		1
	1: Enabled			
Pressure correction	0: Disabled	-		1
	1: Enabled			
VOS correction	0: Disabled	-		2
	1: Based on Kr / Kj Constants			
	Solartron manual edition 1985			
	2: Based on VOS value			
	Solartron manual edition 1996 and later			
Reference temperature	Used when temperature correction is enabled	°C	0100	20
Reference pressure	Used when pressure correction is enabled	bar(g)	0100	0
ко	Constant from calibration certificate	-	-1e91e9	1.7418E2
K1	Constant from calibration certificate	-	-1e91e9	-1.10493e0
K2	Constant from calibration certificate	-	-1e91e9	3.703268e-4
K18	Constant from calibration certificate	-	-1e91e9	-6.415e-4
K19	Constant from calibration certificate	-	-1e91e9	-5.674e-1
K20A	Constant from calibration certificate	-	-1e91e9	2.888e-4
К20В	Constant from calibration certificate	-	-1e91e9	-5.581e-6
K21A	Constant from calibration certificate	-	-1e91e9	-4.467e-1
K21B	Constant from calibration certificate	-	-1e91e9	-8.633e-3
Kr	Used when VOS method is set to 'Based on Kr / Kj Constants'.	-	-1+1	0.0
	Constant needs to be obtained from Solartron			
Kj	Used when VOS method is set to 'Based on Kr / Kj Constants'.	kg/m3	02000	0.0
	Constant needs to be obtained from Solartron	-		
Liquid VOS	Velocity of sound of liquid	m/s	02000	0.0
	Used when VOS method is set to 'Based on VOS value'			

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Corrected density	Density corrected for temperature, pressure and VOS	kg/m3	CORDENS		0
	(provided that particular correction is enabled)				
Density corrected for temperature		kg/m3	TCORDENS		0
Density corrected for temperature		kg/m3	PTCORDENS		0
and pressure					
Uncorrected density		kg/m3	UNCDENS		0

Calculations

The indicated density ρ_{i} is calculated by

 $\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$

Where:

ρι	The indicated density	kg/m3
К0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	The time period in μS	μs

The temperature corrected density pt is calculated by

 $\rho_{t} = \left[\rho_{i} \cdot \left[1 + K18 \cdot (t - t_{R})\right] + K19 \cdot (t - t_{R})\right]$

ρ _t	The density corrected for temperature	kg/m3
K18	Obtained from the calibration certificate	-
K19	Obtained from the calibration certificate	-
t	The line temperature	°C
t _R	The reference temperature	°C

The pressure and temperature corrected density ρ_{PT} is calculated by:

$$\rho_{pt} = \left[\rho_t \cdot \left[1 + K20 \cdot \left(p - p_{REF}\right)\right] + K21 \cdot \left(p - p_{REF}\right)\right]$$

$$K20 = K20A + K20B \cdot (p - p_{REF})$$

$$K21 = K21A + K21B \cdot \left(p - p_{REF}\right)$$

Where:

ρ_{pt}	The density corrected for pressure and temperature	kg/m3
K20A	Obtained from the calibration certificate	-
K20B	Obtained from the calibration certificate	-
K21A	Obtained from the calibration certificate	-
K21B	Obtained from the calibration certificate	-
р	The line pressure	bar(g)
p _R	The reference pressure	bar(g)

When 'VOS Correction' is set to '<u>Based on Kr and Kj Constants</u>' the following correction for velocity of sound is applied:

$$\rho_{VOS} = \rho_{pt} + K_{r.} \cdot (\rho_{pt} - K_j)^3$$

When 'VOS Correction' is set to '<u>Based on VOS value</u>', the following correction for velocity of sound is applied:

$$\rho_{VOS} = \rho_{pt} \cdot \left[1 + \frac{1.4e^6}{\rho_{pt} + 1400} \cdot \left(\frac{1}{V_C^2} - \frac{1}{V_A^2} \right) \right]$$

When 300 <= ρ_{pt} <= 1100:

$$V_{C} = 100 + 1.455 \cdot \rho_{pt}$$

When 1100 < ρ_{pt} <= 1600:

$$V_{c} = 2690 - 0.9 \cdot \rho_{pt}$$

Else (ρ_{pt} < 300 or ρ_{pt} > 1600) the VOS of sound correction is not performed.

ρvos	The density corrected for temperature	kg/m3
Kr	Constant obtained from Solartron	-
Kj	Constant obtained from Solartron	kg/m3
Vc	Calibration VOS	m/s
VA	Liquid VOS	m/s

fxSolartron_SG

The function calculates the specific gravity from a frequency input signal provided by a Solartron 3096 or 3098 Specific Gravity transducer.

Compliance

The calculations are in accordance with documents:

- 30985020 'Solartron 3098 Gas Specific Gravity Transducer Manual', 2001
- 30985020, Rev. B, 'Micro Motion 3098 Gas Specific Gravity Meter', October 2007

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Periodic time	In microseconds	μs		01e6	0
	Equals 1000 divided by the frequency in [Hz]				
КО	Constant from calibration certificate	-	К0	-100000	-11.952
К2	Constant from calibration certificate	-	K2	01	4.719593e-5

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALCERR	
Specific Gravity	Ratio of the molecular weight of the gas (mixture) to that of the molecular	-	SG		0
	weight of dry air (i.e. the ideal Specific Gravity).				

Calculations

The specific gravity is calculated by

If the calibration certificate contains factors Gx, Gy, tx and ty then K2 must be calculated as follows:

$$SG = K0 + K2 \cdot \tau^2$$

SG	Specific gravity	-
τ	Periodic time	μs
KO	Obtained from the calibration certificate	-
К2	Obtained from the calibration certificate	-

$$K2 = \frac{Gx - Gy}{t_X^2 - t_Y^2}$$

Gx	Specific gravity of calibration gas x	-
Gy	Specific gravity of calibration gas y	-
τx	Periodic time of calibration gas x	μs
τγ	Periodic time of calibration gas y	μς

fxStatusAlarm

The 'fxStatusAlarm' alarm function generates an alarm that can be triggered by a boolean condition.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name for the tag				
Condition	A boolean indicating whether the alarm should be triggered				
Enable	Enables or disables the alarm			True or false	True
Alarm type	1: Alarm				1
	2: Warning				

fxTag

The 'fxTag' function creates a tag for the cell that contains the 'fxTag' function.

otherwise

Function inputs	Remark		EU S	W tag	Range	Default
Name	Name for the tag					
Description	Description for the tag					
Value	May contain a value or a formula.					
	In case of a formula or a reference to a cell or another tag, the tag becomes read	l-only.				
	On the other hand when it is a value the tag is writable and the specified value is	considered	at			
	the initial value.					
Unit	Defines an engineering unit, enumeration date/time, or a special data type, e.g.	'xt_bool',				
	'xu_kg_s' or 'xe_period').					
Write level	Applies for writeable tags only.					
	Security access level that is required to write a new value to the tag. Only applies	s when input				
	'Value' contains a value and not a formula.					
	When not defined (i.e. function argument is left empty) the tag is only internally	writable by a	a			
	spreadsheet function but not externally writable through the display or commur	nications				
Retentive	Applies for writable tags only					
	Defines whether or not the value needs to be 'remembered' (retentive).					
	When not defined (i.e. function argument is left empty) the tag is retentive provi	ided that the	2			
	tag is writable and AutoReset is not enabled					
AutoReset	Applies for writeable tags only.					
	Automatically resets the tag to its initial value after it has been written to.					
Minimum	Minimum value that is accepted when the tag is externally writable.					
	May be left empty, in which case no minimum check is applied					
Maximum	Maximum value that is accepted when the tag is externally writable					
	May be left empty, in which case no maximum check is applied					
Function outputs	Remark	EU	SW tag	Ala	arm F	allback
Value	Depends on setting 'Mode'	Input Unit	Input Name			
	Mode = 'This Cell'					
	Cell shows the value or the result of the formula that is defined for input					
	'Value'					
	Mode = 'Referred Cell'					
	Cell returns TRUE when the 'fxTag' function evaluates successfully or FALSE					

fxTimer

The 'fxTimer' function provides generic timer functionality.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Start	Trigger to start the timer.		START		
	Sets output Running to 1 and starts accumulation of the actual waited time, provided				
	that the Enable condition is true (<> 0)				
	If the timer is already running, then it will be restarted, i.e. the Wait Time will be set to 0				
	and Elapsed status will be reset to False (in case it was True)				
Reset	Trigger to resets the timer.		RST		
	Sets outputs Elapsed, Running and Wait time to 0				
Limit	Time-out period for the timer.	sec	LIM		
	When the actual wait time is larger than the limit output Elapsed is set to 1.				
	The limit value is expressed in seconds and may contain a fractional part				
	The actual wait time however will be a multifold of the flow computer cycle time.				
	When the limit value does not match an exact number of cycles, then the actual limit				
	value will be rounded upwards to match the 'next' number of cycles. E.g. when the flow				
	computer cycle time is 250 ms and the Limit is set to 3.15 sec, the actual limit value				
	being used will be 3.25 sec.				
Enable	Condition that controls the accumulation of actual waited time.		EN		
	0: Disabled				
	1: Enabled				
	When disabled the actual wait time will be frozen until the timer is enabled again.				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Elapsed	Flag that indicates that timer has timed out, i.e. the actual wait time is larger than the lim	it	ELAP		
Running	Flag that indicates that the timer is running, i.e. has been started and not been reset yet,		RUN		

Running	Flag that indicates that the timer is running, i.e. has been started and not been reset yet,		RUN
	irrespective of the Enable condition		
Wait time	Time accumulated since the latest start and while being enabled. When this time reached	sec	TIM
	the limit, the Elapsed output is set to 1. Time will remain accumulated even when the timer		
	has elapsed.		

fxTotalizerDelta

The function accumulates a **flow increment** into a cumulative (eternal) total.

Besides of the cumulative total the function also outputs the flow increment that represents the increase in flow quantity in the last calculation cycle. This increment value serves as an input for related batch and period flow-weighted averaging and totalization functions.

Inputs and outputs

NOTE: As opposed to the flow increment input value, the flow increment output value is set to 0 when the totalization is disabled and has the proper units and is therefore better suited as input for other functions.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group and retentive stor	age.			
Flow increment	Actual flow increment to be accumulated.	Defined by		01e11	
	Negative values will be ignored, so the cumulative total will not decre	ase. 'Input unit'			
Enabled	Dictates whether the flow accumulation is enabled or not. When disa	bled the	EN		
	cumulative total will not be updated and the increment will be set to	0.			
	0: Disabled				
	1: Enabled				
Input unit	Unit of input 'Flow increment'.				
Output unit	Unit to be used for total and increment.				
	Refer to the next section 'Unit conversion' for more information.				
	Changing the unit will only be possible when the cumulative total value	Je			
	equals 0.				
Rollover value	The cumulative total will be reset to 0 when it reaches the rollover val	lue Defined by	ROVAL	01e15	1e12
		'Output unit'			
Decimal places	Defines the number of decimal places for the total and increment out	tput	DECPLS	-110	-1
	values.				
	-1 means full precision (no rounding applied)				
Reset	This should be used with great care!				0
	Command to reset the cumulative total to 0				
	0: No reset				
	1: Reset				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Cumulative total	Total quantity accumulated so far since the last rollover or reset	Defined by 'Input unit'	CUM		
Increment	Increment in last calculation cycle	Defined by 'Input unit'	INCR		
Rollover flag	Flag indicating a rollover to 0.			ROALM	
	0: Off				
	1: On				
	Note: stays 'On' for one cycle only.				
Reset flag	Flag indicating a reset to 0.			RESET	
	0: Off				
	1: On				
	Note: stays 'On' for one cycle only				

	1. 61	
	Note: stays 'On' for one cycle only	
Recoverable reload error	Flag that indicates that at startup only 2 of the 3 copies were equal and that that value is used as the initial total.	RTOTERR
	0: Off 1: On	
	Note: stays 'On' for one cycle only	
Fatal reload error	Flag that indicates that at startup all 3 copies were different and the total was reset to 0	FTOTERR
	0: Off	
	1: On	
	Note: stays 'On' for one cycle only	

Unit conversion

The function will automatically apply the required conversion based on the unit of the flow increment input value (Input unit) and the selected 'Output unit' for the flow quantity.

E.g. when flow rate input is in 'scf' the output unit is 'MMscf' then the following conversions are applied:

- 1 The flow increment input value is converted to the corresponding base unit, which is 'sm3' for a 'Volume' unit
- 2 The flow increment is converted from 'sm3' to 'MMscf' before the cumulative total and increment output values are updated.

Similar conversions are applied for flow increments that are expressed in mass, volume, normal volume and energy units.

fxTotalizerRate

The function accumulates a **flow rate** into a cumulative (eternal) total.

Besides of the cumulative total the function also outputs the flow increment that represents the increase in flow quantity in

the last calculation cycle. This increment value serves as an input for related batch and period flow-weighted averaging and totalization functions.

Inputs and outputs

Function inputs	Remark	EU	SW tag	Range	De	fault
Name	Optional tag name, tag description and tag group and					
	retentive storage.					
Flow rate	Actual flow rate to be accumulated.	Defined by 'Input		01e11		
	Negative values will be ignored, so the cumulative total will	unit'				
	not decrease.					
Enabled	Dictates whether the flow accumulation is enabled or not.		EN			
	When disabled the cumulative total will not be updated and					
	the increment will be set to 0.					
	0: Disabled					
	1: Enabled					
Input unit	Unit of input 'Flow rate.					
Output unit	Unit to be used for total and increment.					
	Refer to the next section 'Unit conversion' for more					
	information.					
	Changing the unit will only be possible when the cumulative					
	total value equals 0.					
Rollover value	The cumulative total will be reset to 0 when it reaches the	Defined by 'Output	ROVAL	01e15	1e:	12
	rollover value	unit'				
Decimal places	Defines the number of decimal places for the total and		DECPLS	-110	-1	
	increment output values.					
	-1 means full precision (no rounding applied)					
Reset	This should be used with great care!				0	
	Command to reset the cumulative total to 0					
	0: No reset					
	1: Reset					
Function outputs	Remark	EU		SW tag	Alarm	Default
Cumulative total	Total quantity accumulated so far since the last rollover or res	set Defined I	oy Input unit'	CUM		
Increment	Increment in last calculation cycle	Defined I	oy 'Input unit'	INCR		
Rollover flag	Flag indicating a rollover to 0.				ROALM	
	0: Off					
	1: On					
	Note: stays 'On' for one cycle only.					
Reset flag	Flag indicating a reset to 0.				RESET	
	0: Off					
	1: On					
	Note: stays 'On' for one cycle only					
Reload warning	Flag that indicates that at startup only 2 of the 3 copies were	equal			RLWARN	
	and that that value is used as the initial total.					
	0: Off					
	1: On					
	Note: stays 'On' for one cycle only					
Reload error	Flag that indicates that at startup all 3 copies were different	and the			RLERR	
	total was reset to 0					
	0: Off					
	1: On					
	Note stave Orl for one such only					

Unit conversion

The function will automatically apply the required conversion based on the unit of the flow rate input value (Input unit) and the selected 'Output unit' for the flow quantity.

Note: stays 'On' for one cycle only

E.g. when flow rate input is in 'kg/hr' the selected unit is 'tonne' then the following conversions are applied:

- 1 The flow rate value is converted to the corresponding base unit, which is 'kg/s' for a 'Mass per Time' unit
- 2 The flow increment over the last calculation cycle is calculated from the 'kg/s' value and the actual calculation cycle time,

resulting in a value expressed in 'kg' (i.e. the base unit for 'Mass').

3 The flow increment is converted from 'kg' to 'tonne' before the cumulative total and increment output values are updated.

Similar conversions are applied for flow rates that are expressed in volume, standard volume, normal volume and energy units.

fxUGC_C

The function calculates the density from a frequency input signal provided by a UGC densitometer and corrects it for temperature and pressure effects in **US customary** units.

NOTE: Calibration constants also need to be in US customary units.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Periodic time	In microseconds	μs		01e6	
	Equals 1000 divided by the frequency in [Hz]				
Line temperature	Used when temperature correction is enabled	°F		-459.67+1000	
Line pressure	Used when pressure correction is enabled	psig		03000	
Temperature correction	0: Disabled	-	TEMPCOR		1
	1: Enabled				
Pressure correction	0: Disabled	-	PRESCOR		1
	1: Enabled				
Reference temperature	Used when temperature correction is enabled	°F	REFTEMP	0200	60
Reference pressure	Used when pressure correction is enabled	psig	REFPRES	01500	0
ко	Constant K0 from calibration certificate	-	К0	-1e91e9	
K1	Constant K1 from calibration certificate	-	K1	-1e91e9	
K2	Constant K2 from calibration certificate	-	K2	-1e91e9	
KT1	Constant KT1 from calibration certificate		KT1	-1e91e9	
KT2	Constant KT2 from calibration certificate		KT2	-1e91e9	
КТЗ	Constant KT3 from calibration certificate		KT3	-1e91e9	
KP1	Constant KP1 from calibration certificate		KP1	-1e91e9	
KP2	Constant KP2 from calibration certificate		KP2	-1e91e9	
КРЗ	Constant KP3 from calibration certificate		KP3	-1e91e9	

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal (No error condition)		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
Corrected density	Density corrected for temperature and pressure	lbm/ft3	CORDENS		0
Uncorrected density	Uncorrected (indicated) density	lbm/ft3	UNCDENS		0

Calculations

The uncorrected density ρ_i is calculated by

$$\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$$

Where:

ρι	The uncorrected density	lbm/ft3
K0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	The time period in µS	μs

The temperature and pressure corrected density ρt is calculated by:

$$\rho_{i} = \rho_{i} + \left[K_{p_{1}} + K_{p_{2}} \cdot \rho_{i} + K_{p_{3}} \cdot \rho_{i}^{2}\right] \cdot (p - p_{R}) + \left[K_{T_{1}} + K_{T_{2}} \cdot \rho_{i} + K_{T_{3}} \cdot \rho_{i}^{2}\right] \cdot (t - t_{R})$$

ρt	The density corrected for temperature and pressure	lbm/ft3
K _{P1}	Obtained from the calibration certificate	-
K _{P2}	Obtained from the calibration certificate	-
Крз	Obtained from the calibration certificate	-
K _{T1}	Obtained from the calibration certificate	-
K _{T2}	Obtained from the calibration certificate	-
Ктз	Obtained from the calibration certificate	-
t	The line temperature	°F
t _R	The reference temperature	°F
р	The line pressure	psig
p _R	The reference pressure	psig

fxUGC_M

The function calculates the density from a frequency input signal provided by a UGC densitometer and corrects it for temperature and pressure effects in **metric** units. Calibration constants also need to be in metric units.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Periodic time	In microseconds	μs		01e6	
	Equals 1000 divided by the frequency in [Hz]				
Line temperature	Used when temperature correction is enabled	°C		-273.15+500)
Line pressure	Used when pressure correction is enabled	bar(g)		0200	
Temperature correction	0: Disabled	-	TEMPCOR		1
	1: Enabled				
Pressure correction	0: Disabled	-	PRESCOR		1
	1: Enabled				
Reference temperature	Used when temperature correction is enabled	°C	REFTEMP	0100	20
Reference pressure	Used when pressure correction is enabled	bar(g)	REFPRES	0100	0
ко	Constant K0 from calibration certificate	-	К0	-1e91e9	
К1	Constant K1 from calibration certificate	-	K1	-1e91e9	
К2	Constant K2 from calibration certificate	-	K2	-1e91e9	
КТ1	Constant KT1 from calibration certificate		KT1	-1e91e9	
кт2	Constant KT2 from calibration certificate		KT2	-1e91e9	
ктз	Constant KT3 from calibration certificate		КТЗ	-1e91e9	
KP1	Constant KP1 from calibration certificate		KP1	-1e91e9	
KP2	Constant KP2 from calibration certificate		KP2	-1e91e9	
КРЗ	Constant KP3 from calibration certificate		KP3	-1e91e9	

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal (No error condition)		STS		
	1: Input argument out of range			FIOOR	
	2: Calculation error			CALC	
Corrected density	Density corrected for temperature and pressure	kg/m3	CORDENS		0
Uncorrected density	Uncorrected (indicated) density	kg/m3	UNCDENS		0

Calculations

The uncorrected density ρ_i is calculated by

 $\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$

Where:

ρ	The uncorrected density	kg/m3
K0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	The time period in μS	μs

The temperature and pressure corrected density $\boldsymbol{\rho}t$ is calculated by:

$$\rho_{i} = \rho_{i} + \left[K_{p_{1}} + K_{p_{2}} \cdot \rho_{i} + K_{p_{3}} \cdot \rho_{i}^{2}\right] \cdot \left(p - p_{R}\right) + \left[K_{T_{1}} + K_{T_{2}} \cdot \rho_{i} + K_{T_{3}} \cdot \rho_{i}^{2}\right] \cdot \left(t - t_{R}\right)$$

ρt	The density corrected for temperature and pressure	kg/m3
K _{P1}	Obtained from the calibration certificate	-
K _{P2}	Obtained from the calibration certificate	-
Крз	Obtained from the calibration certificate	-
Kt1	Obtained from the calibration certificate	-
K _{T2}	Obtained from the calibration certificate	-
Ктз	Obtained from the calibration certificate	-
t	The line temperature	°C
t _R	The reference temperature	°C
р	The line pressure	bar(g)
p _R	The reference pressure	bar(g)

fxWatchUpdate

This function raises a flag whenever a value has been updated in the latest calculation cycle.

It is a generic function that can be used for any purpose, e.g. to report the number of times that a gas chromatograph has sent updates of the gas composition.

Use function fxTotalizerDelta to accumulate the number of times the flag has been raised.

Function inputs	Remark		EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group					<empty></empty>
Value	The value that needs to be checked for updates			VAL		0
Neglect zeros	Controls if the value 0 has to be considered as an update or no	it.		NGLZERO		0
	0: Disabled					
	The value 0 is also an update					
	1: Enabled					
	The value 0 is not considered as an update					
Function outputs	Remark	EU	SW tag	Alarm	Fa	llback

Function outputs	Remark	EU	SW tag	Alarm	Fallback
UpdateFlag	Update flag		UPDATEFLAG		0
	0: Value has not changed				
	1: Value has not changed				
	Flag is automatically cleared (set to 0) at next cycle				

fxVCone_C

This function calculates the mass flow rate for a measured differential pressure over a McCrometer V-Cone meter in <u>U.S.</u> <u>customary</u> units.

The calculation, as specified by the meter supplier, is essentially a modified ISO 5167 flow rate calculation. As opposed to ISO-5167 the discharge coefficient is a function input. Because the discharge coefficient is a function of Reynolds number an optional calibration correction needs to be applied outside this function.

Compliance

McCrometer: Flow Calculations for the V-Cone Flow meter Literature part #24509-54 Rev 3.1/02-05 2005

Function inputs and outputs

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Differential Pressure	Differential pressure over the V-Cone device measured at the up- and	inH2O @ 60°F	0100	0
	downstream pressure taps			
Pressure	Upstream pressure value of the fluid at metering conditions	psia	030000	0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°F	-4002000	0
Density	Down or upstream density of the fluid at metering conditions	lbm/ft3	0200	0
Dynamic Viscosity	Dynamic viscosity of the fluid	lbm/ft.s	010	6.9e-6
Isentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the	-	010	1.3
	ratio of the specific heat capacity at constant pressure to the specific heat at			
	constant volume. According to the ISO standard this ratio may be used, when the real value is unknown.			
Pipe Diameter	Internal diameter of the pipe at reference temperature	inches	0100	0
Pipe Expansion factor	The thermal expansion coefficient of the pipe material	1/°F	01e-4	6.2e-6
Pipe Reference temperature	The reference temperature that corresponds to the 'Pipe diameter' input	°F	-4002000	68
ripe kererence temperature	value	1	-4002000	00
Cone Diameter	Cone diameter at reference temperature	inches	0 'Pipe Diameter'	0
Cone Expansion factor	The thermal expansion coefficient of the Cone material	1/°F	01e-4	9.25e-6
Cone Reference Temperature	The reference temperature that corresponds to the 'Cone diameter' input	°F	-4002000	68
cone kererenee remperature	value	•	4002000	00
Configuration	The type of McCrometer V-Cone meter.	-		1
j	This setting is used to select the appropriate equation for determination of			-
	the gas expansion factor as specified by McCrometer			
	1: Standard V-Cone			
	2: Wafer-Cone			
	Note of input 'Fluid' is set to 'Liquid', then this input is not used (because the			
	expansion factor is set to 1)			
Pressure Location	1: Upstream	-		1
	Input 'Pressure' represents the pressure at the upstream pressure tapping			
	(p ₁).			
	Since the absolute pressure is usually measured at the upstream tapping this			
	is the most common setting.			
	2: Downstream			
	Input 'Pressure' represents the pressure at the downstream tapping (p_2).			
Temperature Location	1: Upstream	-		2
	Input 'Temperature' represents the upstream temperature (t ₁).			
	2: Downstream			
	Input 'Temperature represents the temperature at the downstream tapping			
	(t ₂).			
	3: Recovered			
	Input 'Temperature' represents the downstream temperature at a location Where the pressure has fully recovered (t ₃).			
	Since temperature measurement is usually downstream of the flow device			
	this is the most common setting.			
Temperature Correction	This parameter specifies if and how the temperature should be corrected			1
	from downstream to upstream conditions (or vice versa)			1
	1: (1-κ)/κ			
	Isentropic expansion using $(1-\kappa)/\kappa$ as the temperature referral exponent			
	2: Constant			
	Isentropic expansion using input 'Temperature Exponent' as the temperature			
	referral exponent [-]			
	3: Joule Thomson			
	Isenthalpic expansion using input 'Temperature Exponent' as the Joule			
	Thomson coefficient [°F/psi].			
	This method is prescribed by ISO5167-1:2003.			
Temperature Exponent	Refer to input Temperature Correction	-		0
	Unit depends on input Temperature Correction value	-°F/psi		
Density Location	This parameter specifies if and how the density should be corrected from	-		1
	downstream to upstream conditions (or vice versa).			
	1: Upstream			

Function inputs	Remark	EU	Range	Default
	Input 'Density' represents the density at the upstream pressure tapping (ρ_1).			
	2: Downstream			
	Input 'Density' represents the density at the downstream tapping ($ ho_2$).			
	3: Recovered			
	Input 'Density' represents the density downstream at a location Where the			
	pressure has fully recovered (p3).			
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be	-		0
	used when the input value is set to 0, else the input value will be used.			
	For more details refer to section 'Density correction'.			
Fluid	The type of fluid being measured	-		1
	1: Gas			
	2: Liquid			
Discharge coefficient	The McCrometer reference document states that the discharge coefficient is	-	02	0.85
	a function of Reynolds number. A calibration correction needs to be			
	implemented through an additional function and input 'Discharge coefficient'			
	needs to be linked to the corresponding output of this additional function.			

Function outputs	Remark	EU	Fallback
Status	0: Normal (No error condition)		
	1: Input argument out of range		
	2: No convergence		
Mass flow rate	The calculated mass flow rate	klbm/hr	0
Beta ratio	Cone to pipe diameter ratio at upstream temperature	-	Input Cone diameter /
			Input Pipe diameter
Cone diameter	At the upstream temperature	inches	Input Cone diameter
Pipe diameter	At the upstream temperature	inches	Input Pipe diameter
Upstream pressure	Pressure at upstream tapping (p1)	psia	Input Pressure
Pressure at downstream tapping	Pressure at downstream tapping (p2)	psia	Input Pressure
Recovered downstream pressure	Fully recovered downstream pressure (p3)	psia	Input Pressure
Upstream temperature	Temperature at upstream tapping (t1)	°F	Input Temperature
Temperature at downstream tapping	Temperature at downstream tapping (t2)	°F	Input Temperature
Downstream Temperature	'Fully recovered' downstream temperature (t3)	°F	Input Temperature
Upstream density	Density at upstream tapping ($ ho_1$)	lbm/ft3	Input Density
Density at downstream tapping	Pressure at downstream tapping (ρ₂)	lbm/ft3	Input Density
Downstream density	'Fully recovered' downstream density (ρ₃)	lbm/ft3	Input Density
Reynolds number		-	0
Discharge coefficient	Same as input value	-	
Expansion Factor		-	0
Velocity	Pipeline velocity	Ft/s	0
Expansion Factor Range	The McCrometer reference document states that for gas applications	-	0
-	the expansion factor should not get below 0.84		
	0: Expansion factor is in valid range		
	1: Expansion factor is out of valid range		

Calculations

The flow calculation is as specified in the McCrometer reference document.

The downstream to upstream correction (and vice versa) for pressure, temperature and density are as specified for function 'ASME MFC-3M Orifice'.

fxVCone_M

This function calculates the mass flow rate for a measured differential pressure over a McCrometer V-Cone meter in metric units.

The calculation, as specified by the meter supplier, is essentially a modified ISO 5167 flow rate calculation. As opposed to ISO-5167 the discharge coefficient is a function input. Because the discharge coefficient is a function of Reynolds number an optional calibration correction needs to be applied outside this function.

Compliance

• McCrometer: Flow Calculations for the V-Cone Flow meter Literature part #24509-54 Rev 3.1/02-05 2005

Function inputs and outputs F.m.atian innuts Domosili

Function inputs	Remark	EU	Range	Default
Name	Optional tag name, tag description and tag group			
Differential Pressure	Differential pressure over the V-Cone device measured at the up- and downstream pressure taps	mbar	02000	0
Pressure	Upstream pressure value of the fluid at metering conditions	bar(a)	02000	0
Temperature	Down- or upstream temperature of the fluid at metering conditions	°C	-2401000	0
Density	Down or upstream density of the fluid at metering conditions	kg/m3	02000	0
Dynamic Viscosity	Dynamic viscosity of the fluid	Pa.s	01	0.01115
Isentropic Exponent	Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the	-	02	0
	specific heat capacity at constant pressure to the specific heat at constant volume. According to the ISO standard this ratio may be used, when the real value is unknown.			
Pipe Diameter	Internal diameter of the pipe at reference temperature	mm	02000	0
Pipe Expansion factor	The thermal expansion coefficient of the pipe material	1/°C	01	0.0000108
Pipe Reference temperature	The reference temperature that corresponds to the 'Pipe diameter' input value	°C	-2401000	20
Cone Diameter	Cone diameter at reference temperature	mm	0	0
Cone Expansion factor	The thermal expansion coefficient of the Cone material	1/°C	•	0.0000163
Cone Reference Temperature	The reference temperature that corresponds to the 'Cone diameter' input value	°C	-240 1000	20
Configuration	The type of McCrometer V-Cone meter.	C	-2401000	1
configuration	This setting is used to select the appropriate equation for determination of the gas expansion factor as specified by McCrometer 1: Standard V-Cone 2: Wafer-Cone Note of input 'Fluid' is set to 'Liquid', then this input is not used (because the expansion factor is set to 1)			1
Pressure Location	1: Upstream			1
	Input 'Pressure' represents the pressure at the upstream pressure tapping (p ₁). Since the absolute pressure is usually measured at the upstream tapping this is the most common setting. 2: Downstream Input 'Pressure' represents the pressure at the downstream tapping (p ₂).			1
Temperature Location	1: Upstream	-		2
	Input 'Temperature' represents the upstream temperature (t ₁). 2: Downstream Input 'Temperature represents the temperature at the downstream tapping (t ₂). 3: Recovered Input 'Temperature' represents the downstream temperature at a location Where the pressure has fully recovered (t ₃). Since temperature measurement is usually downstream of the flow device this is the most common setting.			
Temperature Correction	This parameter specifies if and how the temperature should be corrected from downstream to upstream conditions (or vice versa) 1: $(1-\kappa)/\kappa$ Isentropic expansion using $(1-\kappa)/\kappa$ as the temperature referral exponent 2: Constant			1
	Isentropic expansion using input 'Temperature Exponent' as the temperature referral exponent [-] 3: Joule Thomson Isenthalpic expansion using input 'Temperature Exponent' as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003.			
Temperature Exponent	Refer to input Temperature Correction Unit depends on input Temperature Correction value	- -°C/bar		0
Density Location	 This parameter specifies if and how the density should be corrected from downstream to upstream conditions (or vice versa). 1: Upstream Input 'Density' represents the density at the upstream pressure tapping (ρ₁). 2: Downstream 	-		1
	Input 'Density' represents the density at the downstream tapping (ρ_2). 3: Recovered			

Function inputs	Remark	EU	Range	Default
	Input 'Density' represents the density downstream at a location Where the pressure has			
	fully recovered (ρ ₃).			
Density Exponent.	This factor is used when density correction is enabled. The formula $1/\kappa$ will be used	-		0
	when the input value is set to 0, else the input value will be used.			
	For more details refer to section 'Density correction'.			
Fluid	The type of fluid being measured	-		1
	1: Gas			
	2: Liquid			
Discharge coefficient	The discharge coefficient of the meter as specified by the manufacturer.	-	02	0.85
	The McCrometer reference document states that the discharge coefficient is a function			
	of Reynolds number. It is advised that the meter is calibrated across the range of			
	Reynold numbers for which the meter is used.			
	The resulting correction curve can be implemented through function			
	fxInterolationCurve. Input 'Discharge coefficient' needs to be linked to the			
	corresponding output of this additional function.			

Function outputs	Remark	EU	Fallback
Status	0: Normal (No error condition)		
	1: Input argument out of range		
	2: No convergence		
Mass flow rate	The calculated mass flow rate	tonne/h	0
Beta ratio	Cone to pipe diameter ratio at upstream temperature	-	Input Cone diameter /
			Input Pipe diameter
Cone diameter	At the upstream temperature	mm	Input Cone diameter
Pipe diameter	At the upstream temperature	mm	Input Pipe diameter
Upstream pressure	Pressure at upstream tapping (p1)	bar(a)	Input Pressure
Pressure at downstream tapping	Pressure at downstream tapping (p2)	bar(a)	Input Pressure
Recovered downstream pressure	Fully recovered downstream pressure (p3)	bar(a)	Input Pressure
Upstream temperature	Temperature at upstream tapping (t1)	°C	Input Temperature
Temperature at downstream tapping	Temperature at downstream tapping (t₂)	°C	Input Temperature
Downstream Temperature	'Fully recovered' downstream temperature (t3)	°C	Input Temperature
Upstream density	Density at upstream tapping (ρ_1)	kg/m3	Input Density
Density at downstream tapping	Pressure at downstream tapping (ρ₂)	kg/m3	Input Density
Downstream density	'Fully recovered' downstream density ($ ho_3$)	kg/m3	Input Density
Reynolds number		-	0
Discharge coefficient	Same as input value	-	
Expansion Factor		-	0
Velocity	Pipeline velocity	m/s	0
Expansion Factor Range	The McCrometer reference document states that for gas applications the	-	0
-	expansion factor should not get below 0.84		
	0: Expansion factor is in valid range		
	1: Expansion factor is out of valid range		

Calculations

The flow calculation is as specified in the McCrometer reference document.

The downstream to upstream correction (and vice versa) for pressure, temperature and density are as specified for function 'ISO 5167 Orifice'.

3 Flow-X IO functions

This chapter lists all available IO functions. Please refer to the pinouts for your specific model of flow computer in the installation manual provided with the Flow-Xpress software.

fxAnalogInput

Each flow module supports a maximum of 6 analog input signals. The first 2 signals can be used as either a mA/VDC input or as a RTD input.

The Analog input function is used for mA and VDC inputs. For RTD inputs refer to function 'RTD Input'.

Analog signals are sampled at a rate of about 15 Hz. Every calculation cycle the samples are averaged and the average is scaled to a value in engineering units.

The output value can be equal to either the last sample or the average of the samples of the last calculation cycle. The average is either the arithmetic mean or the Root of the Mean of the Squares (RMS), Where the latter is meant for a differential pressure signal of a primary flow device (e.g. an orifice plate)

The input signal is considered to be faulty when the input circuitry has an open or a short circuit or when the measured value is outside a configurable range.

NOTE: Function fxKeypadfallback provides the option to force the analog input value to a specific fallback value in case it should fail. It also provides the option to force the input value to a keypad value e.g. upon user request.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Channel number			CHAN	16	1
Input type	1: 4-20 mA		INPTYP		2
	2: 0-20 mA				
	3: 1-5 VDC				
	4: 0-5 VDC				
Averaging type	1: Arithmetic mean		AVGTYP		1
	2: Root Mean Square				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
a					

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Function Input argument out of range			FIOOR	
Percentage value	Actual percentage of scale value	%	PERC		0

fxAnalogOutput

This function configures a single 4-20 mA output channel on the local Flow-X module. Use function 'fxSetAnalogOutput' to control the actual output signal.

The output current is either set directly or gradually changed to the required set point based on the specified filter method.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional Optional tag name, tag description and tag group				<empty></empty>
Channel number		14	CHAN		0
Filter setpoint	015		FILSP		0
	0: No filtering				
	1: Fastest filter				
	15: Slowest filter				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Function Input argument out of range			FIOOR	
Percentage value	The actual (and filtered) output value expressed as a percentage	%	PERC		0

fxSetAnalogOutput

This function writes an analog value to an output. Make sure that the analog output has been set up by calling fxAnalogOutput first.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional Optional tag name, tag description and tag group				<empty></empty>
Module	Not used, set to -1			-116	-1
Channel number		14	CHAN		0
Filter setpoint	015		FILSP		0
	0: No filtering				
	1: Fastest filter				
	15: Slowest filter				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal		STS		
	1: Function Input argument out of range			FIOOR	

fxDigitalInput

The Digital Input function processes a single digital input and outputs either the actual input signal or the latched input signal.

Function inputs	Remark	EU	SW tag	Default
Name	Optional tag name, tag description and tag group			
Channel number	116		CHAN	1
Logic	1: Positive		LOGIC	1
	2: Negative			
Mode	1: Actual		MODE	1
	2: Latched			
Threshold	Each digital input has 2 threshold levels that determine whether the signal is considered to be		THRESHOLD	1
	either high (above the threshold) or low (below the threshold).			
	The threshold levels are as follows (all relative to signal ground):			
	Channels 1 through 8:			
	1: + 1.25 Volts			
	2: + 12 Volts			
	Channels 9 through 16:			
	1: + 3.75 Volts			
	2: + 12 Volts			

Function outputs	Remark	SW tag	Alarm	EU
Status	0: Normal	STS		-
	1: Input argument out of range		FIOOR	
Signal State	0: Off	SIGSTATE		-
	1: On			
	Meaning depends on the input Logic and Mode, refer to the table below.			

Calculations

The following table summarizes the relationship between the input signal and the output 'State', depending on the inputs 'Logic and 'Mode'.

Logic	Mode	Signal state = Off	Signal State = On
Positive	Actual	Actual signal is low	Actual signal is high
Positive	Latched	Signal has not been high during last calculation cycle	Signal has been high during last calculation cycle
Negative	Actual	Actual signal is high	Actual signal is low
Negative	Latched	Signal has not been low during last calculation cycle	Signal has been low during last calculation cycle

fxDigitalOutput

The Digital Output function configures a single digital output on the local module. Use function 'fxSetDigitalOutput' to control the actual output signal.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name for output 'Signal State'				
Channel number	One of the 16 digital I/O channels.		CHAN	116	1
Logic	1: Positive		LOGIC		1
	2: Negative				
Delay	Period of time that the control signal must be high (> 0) without interruption	ms	DELAY	>= 0	0
	before the output will be activated.				
	The value 0 disables the delay function				
	If the control signal becomes 0 before the time has elapsed, then the output				
	signal will not be activated.				
Minimum activation time	Minimum period of time that the signal will remain activated.	ms	MINACTITM	>= 0	0
	After the minimum activation time has elapsed the output signal will remain				
	activated until the control value becomes 0.				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		0
	1: Input argument out of range or conflict			FIOOR	
Signal State	0: Not activated	-	SIGSTATE		0
	1: Activated				

Calculations

The following table summarizes the relationship between the output signal, the input 'Logic and the control value as set by function 'fxSetDigitalOutput'.

fxSetDigitalOutput

This function writes a value to a configured digital output.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Name for output 'Signal State'				
Module	Unused, set to -1			-116	-1
Channel number	One of the 16 digital i/o channels.			116	
Setpoint	Logic is positive:				
	0: Output is activated				
	<>0: Output is not activated				
	Logic is negative:				
	0: Output is not activated				
	<>0: Output is activated				

Function outputs	Remark	SW tag	Alarm	EU	Fallback
Status	0: Normal	STS		-	0
	1: Input argument out of range or conflict		FIOOR		

fxFrequencyOutput

This function provides a programmable output frequency on one of the digital pins. The frequency as well as the duty cycle are user programmable. When using the frequency output to configure a dual pulse system, channel 2 can be configured.

Function inputs	Remark	EU	SW tag	Range	Def	fault
Name						
Index	Index of the frequency output			14		
Channel number	Output channel number, the digital IO pin that is used.			016		
Channel number 2	Output channel number, the digital IO pin that is used.			016	0	
Function outputs	Remark		EU	SW tag	Alarm	Fallback
Status	0: Normal		-	STS		1
	1: Input argument out of range or conflict				FIOOR	

fxSetFrequencyOutput

This function starts a programmed frequency on the digital pin, set by fxFrequencyOutput. In case of a dual pulse via frequency out, here the phase shift between the pins can be configured.

Function inputs	Remark E	J	SW	tag	Range	Default
Name						
Module	Not used, set to -1				-116	-1
Index	Index of the frequency output				14	
Frequency	Output frequency (Hz) H	z			0.01 10000	
Duty cycle	Duty cycle %				0100	
Enabled	Enables (<>0) or disables (0) the output signal.					
Phase shift	Phase shift between dual pulse channel A and B expressed as the ratio of the time delay between the last A and B and the time between two A pulses. A typical phase difference is 90° corresponding to a value of 0.25. The shift is limited to [0°180°).				00.5	0
Function outputs	Remark		EU	SW tag	Alarm	Fallback
Status	0: Normal		-	STS		1
	1: Input argument out of range or conflict				FIOOR	
Actual frequency	Actual frequency, which can deviate from the programmed frequency body of hardware limitations.	ecause	Hz	ACTFRE	Q	0
Actual duty cycle			%	ACTDC		0

fxDoubleChronometry

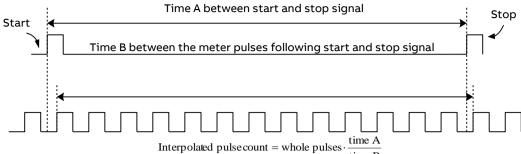
The function provides double chronometry measurement for meter proving and calibration purposes with a resolution of 100 nanoseconds.

The function monitors a (dual) pulse input signal provided by the meter under test and by one or more digital signals that represent the start and stop of the measurement. The digital inputs used for start and stop of the measurement are typically connected to the sphere detector switches of a pipe prover or the piston detectors of a compact prover. The start / stop signal may also be any other type of signal, e.g. a digital output from another flow computer. This allows for flexible master meter configurations in which a single prove measurement is performed by two separate flow computers, one that monitors the meter under test and one that monitors the reference or master meter.

By using multiple Double Chronometry functions multiple prove measurements can be performed at the same time by one and the same flow module.

Some examples of simultaneous prove measurements are:

• For a prover with 2 begin and 2 end detector switches the flow meter can be proved against all 4 the calibrated prover volumes at the same time.


With 2 detectors at one end of the prover (A and B) and 2 at

the other end (C and D) there are 4 possible detector combinations A-C, A-D, B-C and B-D, resulting in four available prover volumes. By defining 4 Prove measurement functions all 4 prove volumes can be used to prove the meter by a single prove sequence. The operator selects the primary detector combination that will be used for calculating the new K factor or meter factor. The result of the 4 detector combinations are compared to each other and an alarm is raised in case of discrepancy.

- Meters that operate in series can all be proved at the same time.
- For meters that provide more than flow signal all signals can be proved at the same time
- For provers with a range of calibrated prover volumes to accommodate proving of meters of different capacities, multiple prover volumes can be processed at the same time.

Combinations of these scenarios are possible as well.

The double chronometry method comprises the measurement of the time between the start and stop signals and the time between the two meter pulses that immediately follow the start and stop signals. The flow module then determines the interpolated number of meter pulses that correspond to the measurement start and stop signals as follows:

time B

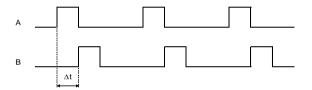
Function inputs and outputs

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Index	Index number		INDEX	14	1
Flow input channel number	Number of the digital input channel		FLOWCHAN		
Start DI channel number	Channel number of the digital input that is to be used as the Start signal		STRTCHAN		0
Start DI logic	1: Positive		STRTLOGIC	12	
2	2: Negative				
Stop DI channel number	Channel number of the digital input that is to be used as the Stop signal.		STOPCHAN		0
	Note: the same digital input may be used for both Start and Stop of				
	measurement				
Stop DI logic	1: Positive		STOPLOGIC	12	
	2: Negative				
Start minimum delay time *	After the Reset command has been given the function will wait for at least	sec	STRTMINDLY	01e9	0
-	this delay time before considering the activation of the Start digital input				
Start maximum delay time *	After the Reset command has been given the function will wait for no longer	sec	STRTMAXDLY	01e9	0
	than this delay time before the Start digital input must have been activated				
	0 disables this delay check				
Stop minimum delay time *	After the Reset command has been given the function will wait for at least	sec	STOPMINDLY	01e9	0
	this delay time before considering the activation of the Stop digital input.				
	0 disables this delay check				
	Note: The stop minimum delay time must be defined when a common digital				
	input is used as both the Start and Stop signals				
Stop maximum delay time *	After the Reset command has been given the function will wait for no longer	sec	STOPMAXDLY	01e9	0
	than this delay time before the Stop digital input must have been activated.				
	0 disables this delay check				
Number of pulses per	Applies for flow meter that provide a direct pulse signal (typically turbine		PLSPERREV	11e9	1
revolution	and Positive Displacement (PD) meters)				
	To exclude the influence of geometrical imperfections of the primary				
	metering device the function may be forced to accumulate a number of				
	pulses that corresponds to a whole number of flow meter revolutions.				
	E.g. suppose that at the stop signal 6754 pulses have been accumulated and				
	that corresponding turbine meter provides 20 pulses for each turbine				
	revolution, the function will accumulate another 6 pulses before the				
	measurement is stopped.				
Start	0 No action		START		0
	<> 0 Starts the double chronometry				
	If the double chronometry function is already running, then it will be				
	restarted.				
Reset	0 No action		RST		
	<> 0 Resets all outputs to 0 or, where applicable, FALSE.				

Function outputs	Remark	SW tag	Alarm	EU
Status	0: Normal	STS		-
	1: Input argument out of range or conflict		FIOOR	
Interpolated pulse count	Equals :	INPOLCNT		
	Whole pulse count * Time A / Time B			
	According to API requirements the interpolated pulse count should be used when less than			
	10000 pulses are acquired			
Whole pulse count	The number of meter pulses that were acquired within the measurement period (time B).	WHOLECNT		
	Could be used instead of interpolated pulses when more than 10000 pulses are acquired			
	Note: Whole pulse count = the decimal part of Interpolated pulse count			
Time between start and stop	Time period between start and stop signal	INPOLTIM		sec
Time between pulses	Time between the meter pulses immediately following the start and stop signals	WHOLETIM		sec
In Progress	Status bit that indicates that the measurement is in progress	INPRG		
Completed	Prove measurement has been completed	COMPL		
Start time-out	Prove measurement has been aborted - Start signal time-out	STRTTO		
Stop time-out	Aborted - Stop signal time-out	STOPTO		

fxPulseInput

Channel B lags channel A


The 'fxPulseInput' function is meant for a flow meter that provides a single or a dual pulse output signal. Each flow module supports either 1 single or 1 dual pulse input.

A dual pulse signal is a set of two pulse signals ('pulse trains') A and B that originate from the same flow meter. The two pulse trains are similar but shifted in phase (typically 90°).

The primary purpose of the dual signal is to allow for **pulse integrity checking**. Added or missing pulses on either pulse train are detected and corrected for and simultaneous noise pulses are rejected.

The function provides detailed information on the raw, corrected and bad pulses for both channels and for both the forward and reverse flow direction.

The phase shifted pulse train signal also allows for automatic detection of <u>flow direction</u>. Each A pulse is followed by a B pulse within a time period (Δ t) in case the flow runs in the forward direction. In case the flow runs in the reverse direction, the opposite is the case, i.e. each B pulse is followed by an A pulse within the same time period Δ t.

The function also provides the option to output the raw pulse signals, which is useful in case a separate flow computer is used for proving purposes. The proving flow computer takes the pulse output from the flow computer that processes the meter on prove to perform prove measurements including double chronometry if required. The prover output signal is generated at 20 MHz, the same frequency at which the raw pulse input signals are sampled.

Compliance

ISO 6551:1982, Petroleum liquids and gases -- Fidelity and security of dynamic measurement -- Cabled transmission of electric and/or electronic pulsed data

NOTE: The Flow/X series of flow computers provides **Level A** pulse security as defined in ISO 6551, which means that bad pulses are not only detected (level B) but also corrected for.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Index	Index number. Always 1.		INDEX	11	1
Channel A	Input channel number for pulse A		CHANA	016	0
	0 disables the entire function				
Channel B	Input channel number for pulse B		CHANB	016	Input Channel A + 1
	Enter 0 in a case of single pulse input				
Pulse fidelity threshold	All pulse fidelity checking will be disabled when the corrected pulse	Hz	FRQTHD	01e5	0
	frequency is below the 'Pulse fidelity threshold'				
	Enter a 0 to disable this functionality (the default value)				
Error pulses limit	When the total number of missing pulses, added and simultaneous pulses		ERRLIM	01e99	0
	for either channel becomes larger than this value, the status becomes				
	'Error Pulses'				
	The value 0 disables the error pulses limit check.				
Missing pulses limit	When the total number of missing pulses on channel A or B becomes	-	MISLIM	01e99	0
	larger than this value, the status becomes 'Missing Pulses Channel x'				
	(with x either A or B)				
	The value 0 disables the missing pulses limit check.				
Added pulses limit	When the total number of added pulses on channel A or B becomes larger	-	ADDLIM	01e99	0
	than this value, the status becomes 'Added Pulses Channel x' (with x				
	either A or B)				
	The value 0 disables the added pulses limit check.				
Simultaneous pulses	When the total number of simultaneous pulses on both channels becomes	-	SIMLIM	01e99	0
limit	larger than this value, the status becomes Simultaneous Pulses '				
	The value 0 disables the simultaneous pulses limit check.				
Good pulse reset limit	When the number of good pulses since the last 'bad' pulse has reached	-	RSTLIM	01e99	0
	this value, all the bad pulse count and alarms will be reset automatically.				
	The value 0 disables the automatic reset function.				
Bad pulse reset	When the value changes the bad pulse count and alarms are reset. Can be	-	RSTCMD	Any value	0
command	used reset the bad pulses manually or automatically e.g. at a every new				
	batch.				
Error rate limit	When the difference in frequency between the two raw pulse trains is	%	ERRLIM	0100	0
	larger than this limit within the last calculation cycle, the status becomes				
	'Pulse Rate Error'				
	The value 0 disables the error rate limit check				
Pulse A output channel	Number of digital I/O channel that is used to output the raw A pulses.	-	POCHANA		0
	0:Not used				

Function inputs	Remark	EU	SW tag	Range	Default
	1:Digital I/O channel 1				
	16:Digital I/O channel 16				
Pulse B output channel	Number of digital I/O channel that is used to output the raw B pulses.	-	POCHANA		0
	0:Not used				
	1:Digital I/O channel 1				
	16:Digital I/O channel 16				
Pulse A output mode	Used to switch the pulse A output on and off.		POMODA		0
	0: Pulse output A is disabled				
	<> 0: Pulse output A is enabled				
Pulse B output mode	Used to switch the pulse B output on and off.		POMODA		0
	0: Pulse output B is disabled				
	<> 0: Pulse output B is enabled				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range			FIOOR	
	2: No A pulses (while B pulses)			NOPLSA	
	3: No B pulses (while A pulses)			NOPLSB	
	4: Missing pulses channel A			MISPLSA	
	5: Missing pulses channel B			MISPLSB	
	6: Added pulses channel A			ADDPLSA	
	7: Added pulses channel B			ADDPLSB	
	8: Simultaneous pulses			SIMPLS	
	9: Pulse rate error			ERRRATE	
	10: Low frequency (above 0 and below cut-off)			LOFRQ	
	11: Error pulses				
	Note: during normal operation status 'Low frequency' occurs			ERRPLS	
	for a relative short time whenever the flow starts or stops. In				
	order to avoid unnecessary alarms the corresponding alarm				
	delay time shall be defined accordingly (default 5 sec).				
Corrected pulse increment	Number of good pulses within the last calculation cycle	-		CORINC	
Corrected frequency	Frequency that corresponds to the last corrected pulse	Hz		CORFRQ	
	increment the last calculation cycle				
Error pulse increment	Number of bad pulses within the last calculation cycle			ERRINC	
Error pulse rate	Number of bad pulses within the last calculation cycle divided	Hz		ERRFRQ	
	by the last calculation cycle time in seconds				
Flow direction	0: Forward	-		FLOWDIR	
	1: Reverse				
Raw pulse increment channel A	Number of raw pulses of channel A within the last calculation			RAWINCA	
•	cycle				
Raw pulse increment channel B	Number of raw pulses of channel B within the last calculation			RAWINCB	
	cycle				
Missing pulse count channel A	Total missing pulse count channel A since the last reset	-		MISCNTA	
Added pulse count channel A	Total added pulse count channel A since the last reset	-		ADDCNTA	
Missing pulse count channel B	Total missing pulse count channel B since the last reset	-		MISCNTB	
Added pulse count channel B	Total added pulse count channel B since the last reset	-		ADDCNTB	
Simultaneous pulses	Total simultaneous pulse count since the last reset			SIMPLSF	
Phase difference	Last measured phase difference between A and B pulse	-		PHASEDIF	
	expressed as the ratio of the time delay between the last A				
	and B and the time between two A pulses. A typical phase				
	difference is 90° corresponding to a value of 0.25.				

fxResetPulseInputErrors

This function resets the error pulse counters (error, added, missing and simultaneous pulses) of the pulse input of one of the modules part of the same configuration. It is required that the pulse input of the specified module is configured by function 'fxPulseInput'.

Function inputs	Remark	(EU	SW tag	Range	Default
Name	Optiona	al tag name, tag description and tag group				<empty></empty>
Module	Unused	, set to 0			016	0
Index	Index n	umber as defined in the corresponding fxPulseInput function			01	
	0 disab	les the function				
Reset	0:	No action				
	<> 0	All error counters are reset to 0				

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range or in conflict			FIOOR	

fxPulseOutput

This function is used to feed pulses to an electro-mechanical (E/M) counter. There are 4 pulse output units, to be selected by the index parameter. The function uses a reservoir to accumulate the pulses. On one hand the number of pulses that need to be added to the reservoir is calculated from inputs 'Increment' and 'Significance factor'. On the other hand pulses are taken from the reservoir and fed to the E/M counter at a rate that will not exceed the specified output rate.

This can also be used to configure a dual pulse situation, for this case you can configure a second channel and the delay it has on the primary channel.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
Index	Index number 14.		INDEX	14	1
Channel	Digital I/O channel number		CHAN	016	0
	0 disables the function				
Significance factor	Factor that specifies the relation between the Increment value and the number of output	-	SIGFCT	01e99	1
	pulses.				
	E.g. a value of 100 means that 1 pulse is generated whenever 100 increment units have				
	been accumulated.				
Pulse width	Time that each output pulse remains active (high) in millisecond	ms	PLSWID	01e6	20
	Restriction (pulse duty cycle is 50%):				
	Pulse width <= 1000 / (2* max. output rate)				
Max. output rate	Maximum pulse output rate.	Hz	MAXFREQ	01e6	40
	When output pulses are generated at a frequency higher than the maximum output rate,				
	the superfluous pulses will be accumulated in the pulse reservoir.				
	Restriction when pulse duty cycle should not exceed 50%:				
	Max. output rate <= 1000 / (2* Pulse width)				
Reservoir alarm limit	Alarm limit for the number of pulses in the reservoir buffer	-	RSVLIM	01e99	1e9
Channel 2	Digital I/O channel number		CHAN	016	0
	0 disables the function				
Delay	Delay between dual pulse channel A and B in milliseconds	ms		01e99	0
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range or in conflict			FIOOR	
Pulse reservoir	Number of pulses that are accumulated in the reservoir.	-	RSVPLS		0
Reservoir alarm status	With respect to the 'Reservoir alarm limit' the number of pulses in the reservoir is:	-	RSVSTS		0
	0: Within limit				
	1: Out of limit			RSVALM	

Calculations

Every calculation cycle a number of pulses is added to the reservoir that is equal to input value 'Increment' divided by input value Significance factor.

fxSetPulseOutput

Adds pulses to the reservoir, to be output on the next cycle. Takes the 'significance factor' into account, see fxPulseOutput.

Function inputs	Remark	EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group				
module	Not used, set to -1.			-116	-1
index	Index of the pulse output			04	
	0 disables the function				
Increment	Number of pulses to be added to the reservoir				
Reset command	0 is normal, 1 is no hardware state changed				0

Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	0: Normal	-	STS		
	1: Input argument out of range or in conflict			FIOOR	

fxPT100Input

Each flow module provides 2 inputs for **Pt-100** sensors. A Pt-100 sensor is a Platinum Resistance Thermometer (**PRT**) element with a resistance of 100 Ω at 0°C. 'Pt' is the symbol for platinum.

Resistance thermometers as such are also referred to as Resistance Temperature Detectors (**RTD**).

The resistance changes linearly with temperature. For Pt-100 elements the linearity coefficient is 0.385 Ohm/°C for European elements and 0.392 Ohm/°C for American elements.

For each sample the temperature value is obtained from the measured Ohms by means of the standard RTD quadratic equation.

The input signal is considered to be faulty when the input circuitry has an open or a short circuit or when the measured value is outside its range (as defined in table below).

Function inputs	Remark			EU	Default
Name	Optional tag name, tag description and tag group				
Channel number				12	1
Input Type	1: European, 0.00385 Ω/ Ω /°C				1
	As per DIN 43760, BS1905,IEC751				
	Range - 200+850 °C				
	2: American, 0.00392 Ω/ Ω /°C				
	Range - 100+457 °C				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	Status output		STS		

Status	Status output		STS		
	0: Normal				
	1: Input argument out of range			FIOOR	
	2: Under range failure			(*)	
	3: Over range failure			(*)	
	4: Open circuit			(*)	
	5: Short circuit			(*)	
Value	Temperature in degrees Celsius	°C	VAL	0	

(*) Note that no alarm is generated for this status output value. This is to avoid an unnecessary alarm in case the input is not used.

fxRTDInput

Reads the PT100 input as a 'raw' Ohm number. Use fxPT100Table to convert to degrees Celsius.

Function inputs	Remark	E	U		Default
Name	Optional tag name, tag description and tag group				
Channel number	12				
Function outputs	Remark	EU	SW tag	Alarm	Fallback
Status	Status output		STS		
	0: Normal				
	1: Input argument out of range			FIOOR	
	2: Under range failure			(*)	
	3: Over range failure			(*)	
	4: Open circuit			(*)	
	5: Short circuit			(*)	
Value		Ohm			0

fxPT100Table

This function converts a resistance value (Ohm) into a temperature value (°C) according to the Pt-100 conversion tables. A Pt-100 sensor is a Platinum Resistance Thermometer (**PRT**) element with a resistance of 100 Ω at 0°C. 'Pt' is the symbol for platinum.

Resistance thermometers as such are also referred to as Resistance Temperature Detectors (**RTD**).

The resistance changes linearly with temperature. For Pt-100 elements the linearity coefficient is 0.385 Ohm/°C for European elements and 0.392 Ohm/°C for American elements

For each sample the temperature value is obtained from the measured Ohms by means of the standard RTD quadratic equation.

The input signal is considered to be faulty when the input circuitry has an open or a short circuit or when the measured value is outside its range (as defined in table below).

Function inputs	Remark		EU	Default		
Name	Optional tag name, tag	description and				
Ohm	Measured temperature	in Ohms	Ohm			
Input Type	1: European, 0.00385 Ω As per DIN 43760, BS19 Range - 200+850 °C 2: American, 0.00392 Ω Range - 100+457 °C	05,IEC751				1
Function outputs	Remark	EU	SW tag	Alarm	Fallback	(
Value		°C			0	

fxTimePeriodInput

This function measures the time period between two pulses with a high resolution (100 nanoseconds) and is typically used for densitometer inputs. The measurement is performed continuously in the background and the function returns the average value since the previous calculation cycle. The measured time period value can be linked to a subsequent densitometer-specific (Solartron, Sarasota, UGC) function that calculates the density at the densitometer conditions. Abnormal measurements are filtered out and alarmed for.

Function inputs	Remark			EU	SW tag	Range	Default
Name	Optional tag name, tag description and tag group						
Channel	Channel number for the signal			-	CHAN	116	0
Time period differential limit	Maximum allowable difference in microseconds.			μs		010000	
	When the time period between two consecutive pulses dif	fers more tl	han this limit from				
	the previous time period, the reading is considered to be a	bnormal.					
	Following an abnormal reading there must be 3 consecutive readings within the limit						
	before the time period value is considered normal again.						
	When no 3 consecutive readings within the limit are available in the last 5 readings then						
	the input signal is considered to be invalid.						
	Resolution of the limit value is 100 nanoseconds.						
Minimum stable time	Minimum time for high- and low-times of a pulse to be cor	nsidered val	id.	μs		010000	30
Function outputs	Remark	EU	SW tag	Ala	rm	Fallbac	k
Status	0: Normal		STS				
Status	0: Normal 1: Input argument out of range		STS	INP	ERR		
Status			STS	INP	ERR		
Status	1: Input argument out of range		STS	INP (*)	ERR	010000 Fallbac	
Status	1: Input argument out of range Outputs will be set to fallback values		STS		ERR		
Status Time period	1: Input argument out of range Outputs will be set to fallback values 2: No valid measurement	μs	STS		ERR	0	
	1: Input argument out of range Outputs will be set to fallback values 2: No valid measurement Outputs will be set to fallback values	μs			ERR	0	
	1: Input argument out of range Outputs will be set to fallback values 2: No valid measurement Outputs will be set to fallback values Average (arithmetic mean) in microseconds of the last	μs Hz			ERR		
Time period	1: Input argument out of range Outputs will be set to fallback values 2: No valid measurement Outputs will be set to fallback values Average (arithmetic mean) in microseconds of the last calculation cycle		TIME		ERR	0	
Time period Frequency	1: Input argument out of range Outputs will be set to fallback values 2: No valid measurement Outputs will be set to fallback values Average (arithmetic mean) in microseconds of the last calculation cycle Average (arithmetic mean) of the last calculation cycle		TIME		ERR	0	
Time period Frequency Curcount	1: Input argument out of range Outputs will be set to fallback values 2: No valid measurement Outputs will be set to fallback values Average (arithmetic mean) in microseconds of the last calculation cycle Average (arithmetic mean) of the last calculation cycle Current counter value	Hz	TIME FREQ CURCNT		ERR	0	

(*) Note that no alarm is generated for this status output value. This is to avoid an unnecessary alarm in case the input is not used

4 Control Center reference

Unit Types

Type of unit	Description	Unit	Convert to	Excel constant	Multiply by	Conversio
Acceleration	meters per second squared	m/s2		xu_m_s2		
	kilometers per second squared	km/s2	m/s2	xu_km_s2	1.0 E+03	Exact
	inch per second squared	in/s2	m/s2	xu_in_s2	2.54 E-02	Exact
	foot per second squared	ft/s2	m/s2	xu_ft_s2	3.048 E-01	Exact
rea	square meter	m2		xu_m2		
	square millimeter	mm2	m2	xu_mm2	2.54 E-02	Exact
	square centimeter	cm2	m2	xu_cm2	1.0 E-04	Exact
	square kilometer	km2	m2	xu km2	1.0 E+06	Exact
	square inch	in2	m2	xu in2	6.4516 E-04	Exact
	square foot	ft2	m2	xu ft2	9.290304 E-02	Exact
ynamic Viscosity	•	Pa.s				
,			Pa.s		1.0 E-01	Exact
	•	•				Exact
		-				Exact
						Exact
nergy	· · ·	-			0.10000201, 0.0010	LAUCE
licigy			1		1.0 E+06 6.4516 E-04 9.290304 E-02 1.0 E-01 1.0 E-03 9.80665 0.45359237 / 0.3048 1.0 E+03 1.0 E+06 1.0 E+09 1.0 E+12 3.6 E+03 3.6 E+06 1 1.05505585262 E+03 1.05505585262 E+09 4.1868 4.1868 E+09 1.05505585262 E+09 1.0 E+03 1.0 E+03 1.0 E+03 1.0 E+06	Exact
	•					Exact
				-		
						Exact
	•			xu_IJ		Exact
						Exact
			-			Exact
						Exact
						Exact
			-			Exact
						Exact
	calorie	cal			4.1868	Exact
	kilocalorie	kcal	-		4.1868 E+03	Exact
	megacalorie	Mcal	J		4.1868 E+09	Exact
	decatherm	dT	J		1.05505585262 E+09	Exact
nergy per Mass	joule per kilogram	J/kg			4.1868 E+09 1.05505585262 E+09	
	kilojoule per kilogram	kJ/kg	J/kg		1.0 E+03	Exact
	megajoule per kilogram	MJ/kg	J/kg		1.0 E+06	Exact
	British thermal unit per pound (avoirdupois)	Btu/lbm	J/kg		2.32601 E+03	Exact
	kilo British thermal unit per pound (avoirdupois)	kBtu/lbm	J/kg		2.32601 E+06	Exact
	calorie per kilogram	cal/kg	J/kq		4.1868	Exact
	· · · · · · · · · · · · · · · · · · ·	kcal/kg	-		4.1868 E+03	Exact
			-			Exact
nergy per Mole	· •		-,5			
nergy per Hole	• •	- 1	1/mol		1 0 F+03	Exact
	square entillinetermm2 <th< td=""><td>Exact</td></th<>	Exact				
			-			Exact
	• • •	-				
			-			Exact
						Exact
	· · ·		-			Exact
	•	-				Exact
	•	•				Exact
		-	J/mol		4.1868 E+06	Exact
nergy per Time	· · ·	-				
		-				Exact
	gigajoules per hour	GJ/hr	J/s		(1.0/3600) E+09	Exact
	megajoules per day		J/s		(1.0/86400) E+06	Exact
	gigajoules per day	GJ/day	J/s		(1.0/86400) E+09	Exact
	kilo British thermal unit per hour	kBtu/hr	J/s			Exact
	million British thermal unit per hour	MMBtu/hr	J/s		(1.05505585262 / 3600) E+09	Exact
	kilo British thermal unit per day	kBtu/d	J/s		(1.05505585262 / 86400) E+06	Exact
	million British thermal unit per day	MMBtu/d	J/s		(1.05505585262 / 86400) E+09	Exact
	mega calorie per hour	Mcal/hr	J/mol		(4.1868/3600) E+06	Exact
	giga calorie per hour	Gcal/hr	J/mol		(4.1868/3600) E+09	Exact
	million calorie per day	Mcal/d	J/mol		(4.1868/86400) E+06	Exact
	giga calorie per day	Gcal/d	J/mol		(4.1868/86400) E+00	Exact
	giga caloric per day	Gcar a	3/1101		(T.1000/00+00) ETUS	LAGUL

Type of unit	Description	Unit	Convert to	Excel constant	Multiply by	Conversio
Energy per Volume	joules per cubic meter	J/m3	- / -			
	kilojoules per cubic meter	kJ/m3	J/m3		1.0 E+03	Exact
	megajoules per cubic meter	MJ/m3	J/m3		1.0 E+06	Exact
	British thermal unit per cubic foot	Btu/ft3	J/m3		(1.05505585262 / 0.02831685) E+03	Exact
	kilo British thermal unit per cubic foot	kBtu/ft3	J/m3		(1.05505585262 / 0.02831685) E+06	Exact
	calorie per cubic meter	cal/m3	J/mol		4.1868	Exact
	kilocalorie per cubic meter	kcal/m3	J/mol		4.1868 E+03	Exact
Energy per Standard Volume	joules per standard cubic meter	J/sm3				
	kilojoules per standard cubic meter	kJ/sm3	J/sm3		1.0 E+03	Exact
	megajoules per standard cubic meter	MJ/sm3	J/sm3		1.0 E+06	Exact
	British thermal unit per standard cubic foot	Btu/scf	J/sm3		(1.05505585262 / 0.02831685) E+03	Exact
	kilo British thermal unit per standard cubic foot	kBtu/scf	J/sm3		(1.05505585262 / 0.02831685) E+06	Exact
	calorie per standard cubic meter	cal/sm3	J/sm3		4.1868	Exact
	kilocalorie per standard cubic meter	kcal/sm3	J/sm3		4.1868 E+03	Exact
Energy per Normal	joules per standard cubic meter	J/m3(n)	-,			
/olume		-,				
	kilojoules per standard cubic meter	kJ/m3(n)	J/m3(n)	xu_J/m3n	1.0 E+03	Exact
	megajoules per standard cubic meter	MJ/m3(n)	J/m3(n)		1.0 E+06	Exact
	calorie per standard cubic meter	cal/m3(n)	J/m3(n)		4.1868	Exact
	kilocalorie per standard cubic meter	kcal/m3(n)	J/m3(n)		4.1868 E+03	Exact
Factor	scaling value	Decimal				
	percent	%	Decimal		1.0 E-02	Exact
	parts per million	ppm	Decimal		1.0 E-06	Exact
Force	Newton	Ν				
	kilogram-force	kgf	Ν		9.80665	Exact
	pound-force	lbf	Ν		4.4482216152605	Exact
Frequency	Hertz	Hz				
leat Capacity per Mass	Joule per kilogram per degree Celsius	J/kg.°C	- 4	xu_J_kg.degC		
	Joule per kilogram per degree Celsius	kJ/kg.°C	J/kg.°C		1.0 E+03	Exact
	British thermal unit per pound (avoirdupois) per degree Fahrenheit	Btu/lbm.°F	J/kg. °C		4186.8	Exact
Heat Capacity per Mole	Joule per mole per degree Celsius	J/mol.°C				
	kilo Joule per kilo mole per degree Celsius	kJ/kmol.°C	J/mol.°C		1	Exact
	British thermal unit per mole per degree Fahrenheit	Btu/lbmol.°F	J/mol.°C		2.326E+03 / 1.8	Exact
Kinematic Viscosity	square meter per second	m2/s				
	square millimeter per second	mm2/s	m2/s		1.0 E-06	Exact
	centistokes	cSt	m2/s		1.0 E-06	Exact
	stokes	St	m2/s		1.0 E-04	Exact
_ength	meter	m				
	centimeter	cm	m		1.0 E-02	Exact
	millimeter	mm	m		1.0 E-03	Exact
	kilometer	km	m		1.0 E+03	Exact
	micron	μ	m		1.0 E-06	Exact
	foot	ft	m		3.048 E-01	Exact
	inch	in	m		2.54 E-02	Exact
-ength per Femperature	meter per degree Celsius	m/°C				
	meter per degree Fahrenheit	m/°F	m/°C		1.8	Exact
	centimeter per degree Celsius	cm/°C	m/°C		1.0 E-02	Exact
	centimeter per degree Fahrenheit	cm/°F	m/°C		1.8 E-02	Exact
	millimeter per degree Celsius	mm/°C	m/°C		1.0 E-03	Exact
	millimeter per degree Fahrenheit	mm/°F	m/°C		1.8 E-03	Exact
	feet per degree Celsius	ft/°C	m/°C		3.048 E-01	Exact
	feet per degree Fahrenheit	ft/°F	m/°C		5.4864 E-01	Exact
	inches per degree Celsius	in/°C	m/°C		2.54 E-02	Exact
	inches per degree Fahrenheit	in/°F	m/°C		4.572 E-02	Exact
lass	kilogram	kg				
	gram	g	kg		1.0 E-03	Exact
	milligram	mg	kg		1.0 E-06	Exact
		lbm	kg		4.5359237 E-01	Exact
	pound mass (avoirdupois)				4 E2E0227 EL02	Exact
	kilopound mass (avoirdupois)	klbm	kg		4.5359237 E+02	
	kilopound mass (avoirdupois) Million pound mass (avoirdupois)	klbm Mlbm	kg		4.5359237 E+05	Exact
	kilopound mass (avoirdupois) Million pound mass (avoirdupois) metric ton	klbm Mlbm tonne	kg kg		4.5359237 E+05 1.0 E+03	Exact Exact
	kilopound mass (avoirdupois) Million pound mass (avoirdupois)	klbm Mlbm	kg		4.5359237 E+05	Exact

SPIRIT IT EXLERATE | FUNCTION REFERENCE MANUAL | CM/EXL/FR-EN

Type of unit	Description	Unit	Convert to Excel cons	stant Multiply by	Conversion
Mass per Mass	mass fraction	mass/mass			
	mass percentage	%mass	mass/mass	1.0 E-02	Exact
Mass per Mole	kilograms per mole	kg/mol			
	kilograms per kilomole	kg/kmol	kg/mol	1.0 E-03	Exact
	grams per mole	g/mol	kg/mol	1.0 E-03	Exact
	pound per pound mole	lbm/lbmol	kg/mol	1.0 E-03	Exact
	kilopound per kilopound mole	klbm/klbmol	kg/mol	1.0 E-03	Exact
Mass per Pulse	kilograms per pulse	kg/pulse			
	grams per pulse	g/pulse	kg/pulse	1 0 F-03	Exact
	pounds mass per pulse	lbm/pulse	kg/pulse		Exact
Mass per Time	kilogram per second	kg/s			Endet
	kilogram per hour	kg/hr	kg/s	(1.0./3600)	Exact
	ton (metric) per hour	tonne/hr	kg/s		Exact
	ton (short) per hour	short ton/hr	kg/s		Exact
	ton (long) per hour	long ton/hr	kg/s		Exact
	ton (long) per hour	iong tony m	kg/ 5		Exact
	pound mass (avoirdupois) per second	lbm/s	kg/s		Exact
	pound mass (avoirdupois) per second	lbm/hr	kg/s		Exact
	kilopound mass (avoirdupois) per hour				
		klbm/hr	kg/s	· · · ·	Exact
	kilogram per day	kg/d	kg/s	. , ,	Exact
	ton (metric) per day	tonne/d	kg/s	. , ,	Exact
	ton (short) per day	short ton/d	kg/s	· · · ·	Exact
	ton (long) per day	long ton/d	kg/s		Exact
		lla na 7-1	lun /a		Eve -t
	pound mass (avoirdupois) per day	lbm/d	kg/s		Exact
	kilopound mass (avoirdupois) per day	klbm/d	kg/s	(4.535924/86400) E+02	Exact
Mass per Volume	kilogram per cubic meter	kg/m3		1.0 E-02 1.0 E-03 1.0 E-03 1.0 E-03 1.0 E-03	
	gram per cubic centimeter	g/cm3	kg/m3		Exact
	pound per cubic foot	lbm/ft3	kg/m3		Exact
	API gravity ⁽¹⁾	°API	kg/m3		Exact ⁽³⁾
				(°API+131.5) ⁽²⁾	
	Specific Gravity at 60 degrees Fahrenheit	SG @ 60°F	kg/m3	ρH2O,60°F ⁽²⁾	Exact ⁽³⁾
	Relative Density at 60 degrees Fahrenheit	RD @ 60°F	kg/m3	рН2О,60°F ⁽²⁾	Exact ⁽³⁾
	conversion is to /from the 'Mass per Volume' value at 60 °F				
	Volume' value at 60 °F ⁽²⁾ _{PH20,60°F} the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation				
	Volume' value at 60 °F ⁽²⁾ _{PH20,60°F} the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the	kg/sm3			
	Volume' value at 60 °F ⁽²⁾ $\rho_{H20,60^{\circ}F}$ the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of $\rho_{H20,60^{\circ}F}$ kilogram per standard cubic meter		ka /cm2	10.502	Evact
Mass per Standard Volume	Volume' value at 60 °F (2) ρH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 (2) The conversion is exact, however the resulting value is an approximation because of ρH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter	g/scm3	kg/sm3		Exact
Volume	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot	g/scm3 lbm/scf	kg/sm3 kg/sm3		Exact Exact
Volume Mass per Normal	Volume' value at 60 °F (2) ρH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 (2) The conversion is exact, however the resulting value is an approximation because of ρH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter	g/scm3	-		
Volume Mass per Normal Volume	Volume' value at 60 °F ⁽²⁾ $\rho_{H20,60°F}$ the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of $\rho_{H20,60°F}$ kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic meter gram per normal cubic centimeter	g/scm3 lbm/scf kg/m3(n) g/cm3(n)	-	1.601846337 E+01	
Volume Mass per Normal Volume	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic meter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number.	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol	kg/sm3	1.601846337 E+01 1.0 E-03	Exact
	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic meter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as	g/scm3 lbm/scf kg/m3(n) g/cm3(n)	kg/sm3	1.601846337 E+01 1.0 E-03	Exact
Volume Mass per Normal Volume	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic meter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number.	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol	kg/m3(n)	1.601846337 E+01 1.0 E-03 1.0 E+03	Exact Exact
Volume Mass per Normal Volume	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic centimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol	kg/sm3 kg/m3(n) mol	1.601846337 E+01 1.0 E-03 1.0 E+03	Exact Exact Exact
Volume Mass per Normal Volume	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic centimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound-mol, (lbmol, sometimes lb-mol, lbm-mol,	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol	kg/sm3 kg/m3(n) mol	1.601846337 E+01 1.0 E-03 1.0 E+03	Exact Exact Exact
Volume Mass per Normal Volume Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic centimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound-mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol	kg/sm3 kg/m3(n) mol mol	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01	Exact Exact Exact Exact
Volume Mass per Normal Volume Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic contimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol	kg/sm3 kg/m3(n) mol mol	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01	Exact Exact Exact Exact
Volume Mass per Normal Volume Mole Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic contimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole mole fraction mole percentage	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol lbmol	kg/sm3 kg/m3(n) mol mol	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01 4.5359237 E+02	Exact Exact Exact Exact Exact
Volume Mass per Normal Volume Mole Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole mole fraction mole per cubic meter	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol lbmol	kg/sm3 kg/m3(n) mol mol mol	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01 4.5359237 E+02 1.0 E-02	Exact Exact Exact Exact Exact Exact
Volume Mass per Normal Volume Mole Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole mole fraction mole per cubic centimeter	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol lbmol kbmol kbmol bmol mole/mole %mole mol/m ³ mol/cm ³	kg/sm3 kg/m3(n) mol mol mol mol/mole	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01 4.5359237 E+02 1.0 E-02 1.0 E+6	Exact Exact Exact Exact Exact Exact Exact
Volume Mass per Normal Volume Mole Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic centimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole mole fraction mole per cubic centimeter mole per cubic centimeter mole per cubic centimeter mole per litre	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol lbmol kbmol kbmol bmol/m3 mol/cm ³ mol/l	kg/sm3 kg/m3(n) mol mol mol mol/ma mol/ma	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01 4.5359237 E+02 1.0 E-02 1.0 E+6 1.0 E+3	Exact Exact Exact Exact Exact Exact Exact Exact Exact
Volume Mass per Normal Volume	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic foot kilogram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole pound mole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole mole fraction mole per cubic centimeter mole per cubic centimeter mole per cubic centimeter mole per cubic centimeter mole per cubic meter mole per cubic meter	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol lbmol kbmol kbmol bbmol gwmole %mole mol/m³ mol/cm³ mol/l kmol/m³	kg/sm3 kg/m3(n) mol mol mol mol/ma mol/m ³ mol/m ³	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01 4.5359237 E+02 1.0 E-02 1.0 E+6 1.0 E+3 1.0 E+3 1.0 E+3	Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact
Volume Mass per Normal Volume Mole Mole	Volume' value at 60 °F ⁽²⁾ PH20,60°F the density of water at 60 °F is a global setting with a default value of 999.012 kg/m3 ⁽²⁾ The conversion is exact, however the resulting value is an approximation because of PH20,60°F kilogram per standard cubic meter gram per standard cubic centimeter pound per standard cubic centimeter gram per normal cubic centimeter mole A mole resembles 6.0251 x 10^23 molecules of a substance, a standard number of molecules known as Avogadro's number. kilomole In English units, the pound-mass (lbm) is the standard unit of mass. In order to use the same molecular weights as those listed on the periodic chart, the pound- mol, (lbmol, sometimes lb-mol, lbm-mol, or lbm-mole) is defined kilopound mole mole fraction mole per cubic centimeter mole per cubic centimeter mole per cubic centimeter mole per litre	g/scm3 lbm/scf kg/m3(n) g/cm3(n) mol kmol lbmol lbmol kbmol kbmol bmol/m3 mol/cm ³ mol/l	kg/sm3 kg/m3(n) mol mol mol mol/ma mol/ma	1.601846337 E+01 1.0 E-03 1.0 E+03 4.5359237 E-01 4.5359237 E+02 1.0 E-02 1.0 E+6 1.0 E+3	Exact Exact Exact Exact Exact Exact Exact Exact Exact

Power Pressure (differential)	watt kilowatt megawatt gigawatt	W kW	W	1.0 E+03	Exact
Pressure (differential)	megawatt		W	10 F+03	Evact
Pressure (differential)					
Pressure (differential)	gigawatt		W	1.0 E+06	Exact
Pressure (differential)	5.5		W	1.0 E+09	Exact
	•				
	•	-	Pa	1.0 E+03	Exact
			Pa	9.80665	Exact
	<u> </u>		Pa	9.80665 E+04	Exact
	· · · ·		Pa	47.8803	Exact
		•	Pa	6894.76	Exact
	pound-force per square inch (psi)	psi	Pa	6894.76	Exact
	bar	bar	Pa	1.0 E+05	Exact
	millibar	mbar	Pa	1.0 E+02	Exact
	millimeter of mercury, convential	mmHg	Pa	133.322387415	Exact
	millimeter of water, convential	mmH2O	Pa	9.80665	Exact
	millimeter of water @ 60°F	mmH2O @ 60°F	Pa	248.84/25.4	Approximate
	inch of mercury, convential	inHg con	Pa	3386.38864	Exact
		inHg @ 32°F	Pa	3386.38	Approximate
	inch of mercury @ 60°F	inHg @ 60°F	Ра	3376.85	Approximate
	inch of water, convential	inH2O con	Pa	249.08891	Exact
	inch of water @ 39.2°F (4°C)	inH2O @	Pa	249.082	Approximate
	inch of water @ 60°F	inH2O @	Pa	248.84	Approximate
	inch of water @ 68°F	inH2O @	Pa	248.64108	Approximate
Pressure (absolute)	pascal absolute				
	•		Pa(a)	1.0 E+03	Exact
	pound-force per square inch (psi)	psia	Pa(a)	6894.76	Exact
			D ()	105.05	– .
			Pa(a)	1.0 E+05	Exact
			Pa(a)	1.0 E+02	Exact
	absolute		Pa(a)	133.322387415	Exact
			Pa(a)	9.80665	Exact
	millimeter of water @ 60°F absolute	mmH2Oa @ 60°F	Pa(a)	248.84/25.4	Approximate
	inch of mercury, convential absolute	inHga con	Pa(a)	3386.38864	Exact
	inch of mercury @ 32°F (0°C) absolute	inHga @ 32°F	Pa(a)	3386.38	Approximate
	inch of mercury @ 60°F absolute	inHga @ 60°F	Pa(a)	3376.85	Approximate
	inch of water, convential absolute	inH2Oa con	Pa(a)	249.08891	Exact
	inch of water @ 39.2°F (4°C) absolute	inH2Oa @ 39.2°F	Pa(a)	249.082	Approximate
	inch of water @ 60°F absolute	inH2Oa @ 60°F	Pa(a)	248.84	Approximate
	inch of water @ 68°F absolute	inH2Oa @ 68°F	Pa(a)	248.64107	Approximate
Pressure (gauge)	pascal gauge	Pa(g)			
	kilowatt kW megawatt MW gigawatt GW gigawatt GW kilogram-force per square entimeter kgf/m2 kilogram-force per square foot Ibf/ft2 pound-force per square inch (psi) Ibf/in2 pound-force per square inch (psi) bar millibar mbar millimeter of water, convential mmH20 millimeter of water (p 60°F mmH20 (p) millimeter of water (p 60°F inH20 (p) inch of mercury, convential inH20 (p) inch of mercury (p 32°F (0°C) inHg (p) 32°F inch of mercury (p 60°F inH20 (p) inch of water (p) 60°F inH20 (p) babsol	Pa(g)	1.0 E+03	Exact	
	pound-force per square inch (psi) gauge		Pa(g)	6894.76	Exact
			Pa(g)	1.0 E+05	Exact
			Pa(g)	1.0 E+02	Exact
			Pa(g)	133.322387415	Exact
			Pa(g)	9.80665	Exact
		mmH2Og @	Pa(g)	248.84/25.4	Approximate
		inHgg con	Pa(g)	3386.38864	Exact
			Pa(g)	3386.38	Approximate
	inch of mercury @ 60°F gauge	33 0	Pa(g)	3376.85	Approximate
	inch of water, convential gauge	inH2Og con	Pa(g)	249.08891	Exact
	inch of water @ 39.2°F (4°C) gauge		Pa(g)	249.082	Approximate
	inch of water @ 60°F gauge	inH2Og @	Pa(g)	248.84	Approximate
Pressure inverse	per pascal				
	per kilo pascal	1/kPa	1/Pa	1.0 E-03	Exact
	per Mega pascal	1/MPa	1/Pa	1.0 E-06	2.000
	per pound-force per square inch (psi)	1/psi	1/Pa	1/6894.76	Exact
	per bar	1/bar	1/Pa	1.0 E-05	Exact
Pressure per Mass	pascals per kilogram	Pa/kg	,		
	kilopascals per kilogram	kPa/kg	Pa/kg	1.0 E+03	Exact

kPa/kg

Pa/kg

kilopascals per kilogram

1.0 E+03

Exact

Type of unit	Description	Unit	Convert to Excel constant	Multiply by	Conversior
	megapascals per kilogram	MPa/kg	Pa/kg	1.0 E+06	Exact
	pounds mass (avoirdupois) per square inch per kilogram	psi/kg	Pa/kg		Exact
ulses per Mass	bar per per kilogram pulses per kilogram	bar/kg pulses/kg	Pa/kg	1.0 E+05	Exact
	pulses per gram	pulses/g	pulses/kg	1.0 E+03	Exact
	pulses per pound mass (avoirdupois)	pulses/lbm	pulses/kg	1/0.4535924	Exact
ulses per Volume	pulses per cubic meter	pulses/m3		1.0 E+06 6894.76 1.0 E+03 1/0.4535924 1.0 E+03 1/0.0283168 T[K] = t[°C] + 273.15 1.0 E+03 1.0 E+03 1.0 E+03 1.0 E+06 2.8.31685 E +03 0.158987295 3.785411784 E-03 4.54609 E-03	
	pulses per cubic centimeter	pulses/cm3	pulses/m3	1.0 E-06	Exact
	pulses per litre	pulses/lb	pulses/m3	1.0 E-03	Exact
	pulses per cubic inch	pulses/in	pulses/m3	1/0.0000163871	Exact
	pulses per cubic feet	pulses/ft3	pulses/m3	1/0.0283168	Exact
emperature	Kelvin	К			
	degree Celsius	°C	К	T[K] = t[°C] + 273.15	Exact
	degree Fahrenheit	°F	К		Exact
	Rankine	R	К	T[K] = T[R]/1.8	Exact
emperature inverse	per Kelvin	1/K			
	per degree Celsius	1/°C	1/K	1.0	Exact
	per degree Fahrenheit	1/°F	1/K	1.8	Exact
	per Rankine	1/R	1/K	1.8	Exact
emperature per	degree Celsius per bar	°C/bar			
• •	(Joule-Thomson coefficient)	-,			
		°F/psi	°C/bar	1.8/6894.76	Exact
me	second	S			
	milli second	ms	S		Exact
	micro second	μs	S		Exact
	nano second	ns	S		Exact
	minute	min	S	6.0 E+01	Exact
	hour	Н	S	3.6 E+03	Exact
	day	D	S	8.64 E+04	Exact
elocity	meters per second	m/s			
	kilometers per second	km/s	m/s	1.0 E+03	Exact
	kilometers per hour	km/hr	m/s	(1/3600) E+03	Exact
	foot per second	ft/s	m/s	3.048 E-01	Exact
'olume	cubic meter	m3			
	cubic centimeter	cm3	m3	1.0 E-06	Exact
	kilo cubic meter	km3	m3	1.0 E+03	Exact
	mega cubic meter	Mm3	m3	1.0 E+06	Exact
	liter	L	m3	1.0 E-03	Exact
	cubic inch	in3	m3	16.38706 E+06	Exact
	cubic foot	ft3	m3	28.31685 E -03	Exact
	kilo cubic foot	kft3	m3	28.31685	Exact
	million cubic foot	MMft3	m3	28.31685 E +03	Exact
	barrel (42 US liquid gallons exactly)	bbl	m3	0.158987295	Exact
	US liquid gallon (231 cubic inches exactly)		m3		Exact
	Imperial (U.K.) gallon	UK.gal	m3		Exact
tandard Volume	standard cubic meter	sm3			2/400
	kilo standard cubic meter	ksm3	sm3	1.0 E+03	Exact
	mega standard cubic meter	Msm3	sm3		Exact
	standard cubic foot	scf	sm3		Exact
	kilo standard cubic foot	kscf	sm3		Exact
	million standard cubic foot	MMscf	sm3		Exact
	barrel (standard)	bbl (s)	sm3		Exact
ormal Volume	normal cubic meter	m3(n)	55	0.100001200	Exact
	kilo normal cubic meter	km3(n)	m3(n)	1 0 F+03	Exact
	mega normal cubic meter	Mm3(n)	m3(n)		Exact
olume per Volumo	volume fraction	vol/vol	mathy	1.0 2.00	
oranie per volume	volume percentage	%vol	vol/vol	1 0 F-02	Exact
olume per Pulse	cubic meters per pulse	m3/pulse		1.0 2-02	
oranie per Puise	cubic centimeters per pulse	cm3/pulse	m3/pulse	1 0 E-06	Exact
			m3/pulse		Exact
	litres per pulse	l/pulse	m3/pulse		Exact
	cubic inches per pulse	in3/pulse	m3/pulse	1.63871E-05	Exact
	cubic feet per pulse	ft3/pulse	m3/pulse	0.0283168	Exact
olume per Time	cubic meter per second	m3/s		1/2000	F
	cubic meter per hour	m3/hr	m3/s	1/3600	Exact
	cubic meter per day	m3/d	m3/s	1/86400	Exact
	kilo cubic meter per second	km3/s	m3/s	1.0 E+03	Exact
	kilo cubic meter per hour	km3/hr	m3/s	(1/3600) E+03	Exact
	kilo cubic meter per day	km3/d	m3/s	(1/86400) E+03	Exact
	mega cubic meter per hour	Mm3/hr	m3/s	(1/3600) E+06	Exact
	mega cubic meter per day	Mm3/d	m3/s	(1/86400) E+06	Exact
	cubic feet per hour	ft3/hr	m3/s	0.02831685/3600	Exact

SPIRIT IT EXLERATE | FUNCTION REFERENCE MANUAL | CM/EXL/FR-EN

Type of unit	Description	Unit	Convert to	Excel constant	Multiply by	Conversion
	cubic feet per day	ft3/d	m3/s		0.02831685/86400	Exact
	kilo cubic feet per hour	kft3/hr	m3/s		28.31685/3600	Exact
	kilo cubic feet per day	kft3/d	m3/s		28.31685/86400	Exact
	million cubic feet per hour	Mft3/hr	m3/s		28316.85/3600	Exact
	million cubic feet per day	Mft3/d	m3/s		28316.85/86400	Exact
	barrels per hour	bbl/hr	m3/s		0.158987295/3600	Exact
	barrels per day	bbl/d	m3/s		0.158987295/86400	Exact
Standard Volume per Fime	standard cubic meter per second	sm3/s				
	standard cubic meter per hour	sm3/hr	sm3/s		1/3600	Exact
	standard cubic meter per day	sm3/d	sm3/s		1/86400	Exact
	kilo standard cubic meter per second	ksm3/s	sm3/s		1.0 E+03	Exact
	kilo standard cubic meter per hour	ksm3/hr	sm3/s		(1/3600) E+03	Exact
	kilo standard cubic meter per day	ksm3/d	sm3/s		(1/86400) E+03	Exact
	mega standard cubic meter per hour	Msm3/hr	sm3/s		(1/3600) E+06	Exact
	mega standard cubic meter per day	Msm3/d	sm3/s		(1/86400) E+06	Exact
	standard cubic feet per hour	scf/hr	sm3/s		0.02831685/3600	Exact
	standard cubic feet per day	scf/d	sm3/s		0.02831685/86400	Exact
	kilo standard cubic feet per hour	kscf/hr	sm3/s		28.31685/3600	Exact
	kilo standard cubic feet per day	kscf/d	sm3/s		28.31685/86400	Exact
	million standard cubic feet per hour	MMscf/hr	sm3/s		28316.85/3600	Exact
	million standard cubic feet per day	MMscf/d	sm3/s		28316.85/86400	Exact
	barrels per hour (standard)	bbl/hr	sm3/s		0.158987295/3600	Exact
	barrels per day (standard)	bbl/d	sm3/s		0.158987295/86400	Exact
Normal Volume per Fime	normal cubic meter per second	m3(n)/s				
	normal cubic meter per hour	m3(n)/hr	m3(n)/s		1/3600	Exact
	normal cubic meter per day	m3(n)/d	m3(n)/s		1/86400	Exact
	kilo normal cubic meter per second	km3(n)/s	m3(n)/s		1.0 E+03	Exact
	kilo normal cubic meter per hour	km3(n)/hr	m3(n)/s		(1/3600) E+03	Exact
	kilo normal cubic meter per day	km3(n)/d	m3(n)/s		(1/86400) E+03	Exact
	mega normal cubic meter per hour	Mm3(n)/hr	m3(n)/s		(1/3600) E+06	Exact
	mega normal cubic meter per day	Mm3(n)/d	m3(n)/s		(1/86400) E+06	Exact

Terminology

Term	Description	Same as
Heating Value	Usually the same as Gross Heating Value	
Calorific Value	Usually the same as Superior Calorific Value	
Superior Calorific Value	Heating value when assuming that water formed at the combustion stays in the gaseous state. From ISO6976.	Gross Heating Value
Inferior Calorific Value	Heating value when assuming that water formed at the combustion has totally condensed to the liquid state. From ISO6976.	Net Heating Value
Gross Heating Value	Heating value when assuming that water formed at the combustion stays in the gaseous state Term used in GPA2172.	Superior Calorific Value
Net Heating Value	Heating value when assuming that water formed at the combustion has totally condensed to the liquid state. Term used in GPA2172.	Inferior Calorific Value
Molar Mass Ratio	Ratio of molar mass of gas and molar mass of air at the base conditions	Specific Gravity Ideal Specific Gravity Ideal Relative Density
Relative Density	Ratio of real mass density of gas and real mass density of air at the base conditions	Real Relative Density Real Specific Gravity
Specific Gravity	Ratio of real mass density of gas and real density of air at the base conditions	Molar Mass Ratio Ideal Specific Gravity Ideal Relative Density

Standard composition

The Standard Composition is a standard array of mole fractional values that is used by all functions that require a (partial) compositional analysis.

The following table defines the sequence of the components and also defines which function uses which component.

Component	Used in	Used in ISO6976	Used in GPA2172	Used in AGA5	Used in GERG 2008	Used in MR113
Methane	AGA8 / AGA10 √	√	$\sqrt{\frac{GPA2172}{}}$	AGA5	2008 √	V
Nitrogen						$\overline{}$
Carbon Dioxide						
Ethane						
Propane						
Water	\checkmark		(2)			(3)
Hydrogen Sulphide						
Hydrogen	\checkmark			\checkmark		
Carbon Monoxide	\checkmark			\checkmark		
Oxygen						
i-Butane						
n-Butane						
i-Pentane	\checkmark					
n-Pentane						
n-Hexane						
n-Heptane						
n-Octane	\checkmark					
n-Nonane						
n-Decane	\checkmark					
Helium	\checkmark					
Argon	\checkmark					
Neo-Pentane	(1)		(1)		(1)	(1)

1) Depending on function input 'Neo-Pentane mode' the value is added to i-Pentane or n-Pentane or it is neglected.

2) GPA2172 uses the specified water fraction for wet gas calculation only.

3) MR113 requires the input water fraction to be 0. The output water fraction is calculated from absolute humidity

Notes

Notes

Notes

ABB b.v. Measurement & Analytics

Prof. Dr. Dorgelolaan 20 5613 AM Eindhoven The Netherlands Phone: +31 40 236 9445

Mail: nl-spiritit-sales@abb.com

ABB Malaysia Sdn Bhd. Measurement & Analytics

Lot 608, Jalan SS 13/1K 47500 Subang Jaya Selangor Darul Ehsan, Malaysia Phone: +60 3 5628 4888

abb.com/midstream

ABB Inc.

Measurement & Analytics

7051 Industrial Boulevard Bartlesville OK 74006 United States of America Phone: +1 800 442 3097

ABB Limited

Measurement & Analytics Oldends Lane, Stonehouse Gloucestershire, GL10 3TA United Kingdom Phone: +44 7730 019 180

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. © ABB 2017