Motion Control Products

Application note
Accessing drive error data via EtherCAT

ANO00252

Rev B (EN)

EtherCAT. ™

- —
A -

—

Introduction

AC500 PLCs (PM585 and PM59x) can be used to perform real-time motion control of ABBs EtherCAT enabled servo drives. In
most applications it will be necessary to retrieve error information from one or more axes when an axis fault occurs. Instead of
consuming Process Data Object (PDO) mappings to achieve this, which would unnecessarily consume available EtherCAT cycle
time, this data can be read from the drives using Service Data Object (SDO) access instead.

This application note details the available error objects and includes an export file for a simple to use function block that can be re-
used in EtherCAT motion applications using the PS552-MC motion control libraries. A sample Automation Builder project is
included to further illustrate the use of this function block.

Pre-requisites

You will need to have the following to work through this application note:

e Mint Workbench build 5812 or later (see new.abb.com/mation for latest downloads and support information)

e A MicroFlex 190 or MotiFlex €180 drive with build 5863 or later firmware

e A PC orlaptop running Automation Builder 1.2 or later

e Aninstalled copy of the ABB PLCopen motion control library (PS552-MC-E v3.2.0 or later)

e The SDO access export file from application note AN00242 (included with this application note too)

e Servo drive package for Automation Builder (try to use the latest version from the website)

e One of the following AC500 PLC processors.....PM585, PM590, PM591, PM592 or PM595 (PLC processors should be
running firmware version 2.5.1 or later). The PM595 is provided with an integrated EtherCAT coupler (this should be
running firmware version 4.2.32.2 or later). All other processors require a CM579-ECAT communication module (which
must be running firmware version 2.6.9 or later, but ideally version 4.3.0.2 or later). Contact your local ABB PLC support
team for details on how to check these requirements and update if necessary or visit
http://new.abb.com/plc/programmable-logic-controllers-plcs and select the link for ‘Software’. For the purposes of the
text in this application note we have assumed the use of a PM591 PLC with CM579-ETHCAT coupler

e Ethernet cable to connect the EtherCAT coupler to the drive

To follow the basic steps to create example code to read drive error data only requires a PC or laptop running Automation Builder
1.2 or later and an installed copy of the PS552-MC-E motion control libraries and the servo drive package (version 1.2.4.1 or later if
using 5863 firmware). It is assumed the reader has a basic working knowledge of Mint Workbench, Automation Builder, CoDeSys
and the AC500 PLC and that the reader has read and understood the contents of application note AN00205, which is also available
for download from new.abb.com/motion, and has commissioned an EtherCAT based servo drive (MicroFlex €190 or MotiFlex e180
for example) ready for use with the AC500 PLC.

This application note includes the Mint servo drives package file suitable for use with 5863 firmware for convenience.

ABB Motion control products 1 Power and productivity “ l. l.
new.abb.com/motion for a better world™ "l. l.

Application note

Accessing drive error data via EtherCAT

Available error code

The ECAT_CIA402_CONTROL_APP function block provided as part of the PS552-MC motion control library provides two outputs
that will indicate some error information...

ciafxis0
ECAT_CiAd02_CONTROL_APP
TRUE—EN ERR
14SLOT ERRORID—
1001{NODE drive_remote_ok—

drive_op_mode

kerdxis0.DRIVE_RESET_FAULTdrive_reset_fault
kerfxis0. DRIVE_RELEASE-drive_release
kerfxis0.DRIVE_SET_REF{drive_set_ref
kerAxis0.DRIVE_SET_POSITION=0-drive_set_position
wiatatusWord0=520-{3W

drive_inOperation

drive_fault—sxDriveFaultd
drive_errorcode—wDriveErrCoded=21572

drive_ref_ok—

—FkerAxis0.DRIVE_INOPERATION

CWH—wControlWoard0=15

AN00252

The drive_fault output will become TRUE in the event of a drive error occurring. At the same time drive_errorcode will report the
appropriate DS402 error code. The table below (extracted from the Mint Help file) shows the list of possible errors and their
associated DS402 and Mint error codes...

DS 402 error code |DS 402 description Mint error code |Mint description

0x2310 Continuous over current 10014 Over current

0x2350 Load level fault (12t, thermal state) 10011 Drive Overload

0x3110 Mains over voltage 10016 Bus over voltage

0x3120 Mains under voltage 10017 Bus under voltage

0x3130 Phase failure 10029 Supply phase loss

0x4210 Excess temperature device 10019 Motor temperature input

0x4310 Excess temperature drive 30001 Drive over-temperature

0x4320 Too low temperature drive 30029 Drive under-temperature

0x5110 Supply low voltage 30000 Internal power supply loss
0x5114 U4 = manufacturer specific 10023 Encoder supply lost

0x5400 Power section 10012 Power base not ready

0x5410 Output stages 10013 Power module fault

0x5441 Contact 1 - Manufacturer specific 10010 Drive Enable Input Inactive
0x5442 Contact 2 - Manufacturer specific 10001 Forward Hardware Limit

0x5443 Contact 3 - Manufacturer specific 10002 Reverse Hardware Limit

0x5444 Contact 4 - Manufacturer specific 10033 Safe Torque Off is active

0x5445 Contact 5 - Manufacturer specific 10007 Error Input active

0x7303 Manufacturer specific error 10039 Resolver signals lost or incorrect
0x7305 Incremental sensor 1 fault 10022 Encoder signals lost

0x7310 Speed 10015 Over speed

0x7500 Communication 10026 PDO data lost

0x8400 Velocity speed controller 10006 Fatal velocity exceeded

0x8611 Following Error 10005 Following Error

0x8612 Software limits 10003/10004 Fwd/Rev soft limit hit

OxFF0O0 Manufacturer specific error 10020 Phase search failed

OxFFO1 Manufacturer specific error 10031 Heatsink too hot to Phase Search
OxFF02 Manufacturer specific error 10028 Encoder not ready

OxFF03 Manufacturer specific error 10018 Motor overload

OxFF04 Manufacturer specific error 30002 Production data not valid

OxFF05 Manufacturer specific error 10000 Motion aborted

OxFF06 Manufacturer specific error 10034 Safe Torque Off hardware is faulty
OxFFO7 Manufacturer specific error 10035 Safe Torque Off inputs not same level
OxFF08 Manufacturer specific error 30009 Internal API error

OxFF09 Manufacturer specific error 10036 Encoder reading wrong

OxFFOA Manufacturer specific error 20000 Axis has reached FolErrorWarning
OxFFOB Manufacturer specific error 10038 Encoder battery dead

OxFFOC Manufacturer specific error 20004 Encoder battery low

ABB Motion control products 2 Power and productivity A BB

new.abb.com/motion

for a better world™

I\]

Application note

Accessing drive error data via EtherCAT

AN00252

OxFFOD Manufacturer specific error 10040 The DSL encoder is reporting an error
OxFFOE Manufacturer specific error 10041 Drive output frequency limit exceeded
OxFFOF Manufacturer specific error 20005 Phase loss detected

OxFF10 Manufacturer specific error 20006 Motor temperature has not been read
OxFF09 Manufacturer specific error

The screenshot of our CIA402 function block shows an example of the drive reporting error code 21572 (decimal). In hexadecimal
this equates to 0x5444, which the table above reveals to be “Contact 4 — Manufacturer specific” as far as DS402 is concerned but
which can be decoded as Error Code 10033 - “Safe Torque Off is active” when looking at the equivalent Mint code/description
(which is correct, for the example we attempted to enable the drive whilst the STO input was turned off).

Whilst it is possible to use the CIA402 function block to report application errors to the user its functionality is limited. It is necessary
to hard code a look-up table to translate the DS402 error codes into meaningful error messages — although this might be a
preferred solution if the error data must be presented to the user in a non-English language for example.

The following section details EtherCAT objects available within the drive that are also available to provide error information.

EtherCAT drive error objects

The MicroFlex e190 and MotiFlex e180 drives are provided with two objects that are able to present error data to an EtherCAT
master such as the AC500 PLC.

Diagnosis history object
Object Ox10F3 is the standard “Diagnosis History Object” and operates as defined by the EtherCAT Technology Group document
1020 (EtherCAT Protocol Enhancements)...

| EtherCAT Summar

10F3

10F3

10F3

10F3

10F3

10F3

10F3

10F3

10F3

10F3

10F3

10F3:

Address

10F3:00
01
10F3:02
103
10F3:04
:05
10F3:06
07
10F3:08
109
10F3:04
:0B
10F3:0C
10D
10F3:0E
10F
10F3:10
111
10F3:12
113

14

115

MName

4 Index: 10F3 - DGN_DiagnosisHistory_REC (22 items)

DGM_DiagnosisHistory_REC.SubIndex 000
DGN_DiagnosisHistory_REC.MaximumMessages_US

DGMN_DiagnosisHistory_REC.NewestMessage_US

DGM_DiagnosisHistory_REC.NewestAcknowledgedMessage_US

DGM_DiagnosisHistory_REC.NewMessagesAvailable_BOOL
DGMN_DiagnosisHistory_REC.Flags_U16
DGN_DiagnosisHistory_REC.DiagnosisMessage 0 _0STR
DGMN_DiagnosisHistory_REC.DiagnosisMessage_1_0STR
DGM_DiagnosisHistory_REC.DiagnosisMessage_2_0OSTR
DGMN_DiagnosisHistory_REC.DiagnosisMessage_3_0STR
DGN_DiagnosisHistory_REC.DiagnosisMessage_4_0STR
DGMN_DiagnosisHistory_REC.DiagnosisMessage_5_OSTR
DGM_DiagnosisHistory_REC.DiagnosisMessage_6_0OSTR
DGM_DiagnosisHistory_REC.DiagnosisMessage_7_0OSTR
DGMN_DiagnosisHistory_REC.DiagnosisMessage_8_0STR
DGM_DiagnosisHistory_REC.DiagnosisMessage_S_0STR
DGMN_DiagnosisHistory_REC.DiagnosisMessage_10_0STR
DGM_DiagnosisHistory_REC.DiagnosisMessage_11_0STR
DGMN_DiagnosisHistory_REC.DiagnosisMessage_12_0STR
DGMN_DiagnosisHistory _REC.DiagnosisMessage_13_0STR
DGM_DiagnosisHistory REC.DiagnosisMessage_14 QOSTR

DGMN_DiagnosisHistory_REC.DiagnosisMessage_15_0STR

Actual

21 (16£15)

16 (16%10)

19 (16%13)

16 (16%12)

True

17 (1620011)
00E0O0DO000202010047DDCEDEEFDZ00000420417869731C205361666520545F72717565204F666620696E707!
0O0E0DOO002020100AFDO4CE4F702000004204178659731C205361656520546F72717565204F566620696E7075
O0EOOOO002020100A7204EEDFS020000042041786973222050444F2064617461206973206E6F742070726573
O0EOOOO002020100559F8C3504030000042041786973222050444F2064617461206973206E6F742070726573
00EDDDD002020100CAAABS172B030000042041786573222050444F2064617461206%73206E5F742070726573
00E0000002020100D57F4FE44D030000042041786573222050444F20646174651206973206E6F742070726573
0O0E0DOO002020100855ADD0555030000042041786573222050444F2064517461206573206E0F742070726572
00EOOO000202010084ACE01AA1040000042041786573222050444F2064617451206973206E6F74207072657:2
00E0DOD0020201008D65B816BA0400000420417869731C205361666520546F72717565204F666620696E7078
00E0ODOO00202010050C7B127C40400000420417865731C205361666520546F72717565204F066620696E7072
O0E00O00020201003DBEDCEDC50400000420417869731C205351666520546F72717565204F666620696E707
00EODOO002020100B538B355C50400000420417865731C205361666520546F72717565204F666620656E7075
O0EOOOO0020201008DA4CF22D50400000420417869731C205361666520546F72717565204F566620696E7071
00E0DOD00202010055EBDFS57D6040000042041786573222050444F20646174512065973206E5F742070726573
00o00
00oo00

This object will log up to 16 errors in a circular buffer (from subindex 0x06 to 0x15). It can operate in either overwrite mode or
acknowledge mode. Acknowledge mode is the default (as bit 4 of subindex 0x05 is set by default to define this).

The PLC application can detect that new errors are available by reading subindex 0x04 (which will return TRUE if there are
unacknowledged errors in the history). The PLC application can identify the latest error produced by the drive from subindex 0x02.
Errors are acknowledged by writing the subindex of the message concerned to subindex 0x03. So for example, in the screenshot
above the last error acknowledged by the PLC is held in subindex 18 (0x12) but it can be seen that the newest message (subindex
0x02) indicates 19 (0x13) and so there is an unacknowledged error available (and hence subindex 0x04 reports TRUE).

ABB Motion control products
new.abb.com/motion

3 Power and productivity
for a better world™

A DI
mD

Application note Accessing drive error data via EtherCAT AN00252

The diagnostic messages themselves (subindex 0x06 to 0x15) are encoded as follows (we will use the diagnosis message stored in
subindex 0x13 as an example):

— The first 4 bytes are a diagnostic code to indicate what type of message this is. The message is always an ‘Emergency
error code’ and so these bytes are always ‘00 EO 00 00’ (note that these are encoded in little endian format so the actual
value is 0xO000E0Q0).

— The next 2 bytes are flags for the message content. These bytes are always ‘02 02’ to indicate the message is an error
message with two parameters.

— The next 2 bytes are atextid.... ‘00 01'.....again these will never change and can effectively be ignored

— The next 8 bytes are a timestamp for when the error occured....’55 EB DF 57 D6 04 00 00’ ignoring the endian-
ness....these can be ignored as the drive doesn’t have a real time clock (RTC), you would use the PLC time (which can
use a RTC is a battery is fitted) to timestamp the errors if required

— The next 2 bytes are parameters relating to the error information....”20 04'....bits 12-15 define the data type (2 =
string....this will never change).....bits 0-11 define the length (in bytes) of the string that follows (4 bytes). So in this case
the next 4 bytes can be decoded as a string....these aren’t little endian.....’41 78 69 73’ = “Axis” in ASCII...

— The next 2 bytes are parameters relating to the next piece of error information.....”20 22’so as before, bits 12-15 define
the data type (2 = string....this will never change).....bits 0-11 define the length (in bytes) of the string that follows (22 hex
= 34 bytes). If you then look at the next 34 bytes in subindex 0x13 you will see “50 44 4F 20 64 61 74 61 20 69 73 20 6E
6F 74 20 70 72 65 etc....” which in ASCII reads “PDO data is not pre....” If we could have screenshot the whole message
this would have read “PDO data is not present (MN to CN)”

Whilst this object is very useful and will allow the PLC application to access error descriptions it is quite complex to decode, wil
most likely require an additional PDO mapping for each axis (to continually read the status of subindex 0x04
“NewMessagesAvailable”) and doesn’t provide any information about the error code that the €190 or €180 drive will be flashing via
its seven segment display. This object is most likely to be used by the PC based PLC programming tool itself which may be able to
more easily decode the object’s contents (Note that Automation Builder does not include integrated support to access the
Diagnosis History object). The sample project includes with this application note includes an example function block
(FBReadDriveDiagHistory) that will decode drive errors as they occur via this object, but it is recommended that for most (if not all)
applications an alternative object is used as described in the following paragraphs.

First error object
The first error object (0x4144) is an ABB (manufacturer) specific object that has been included to allow very simple retrieval of error
information from the MicroFlex e190 and MotiFlex e180 servo drives....

EtherCAT

Address | MName Actual
4 Index: 4144 - MML_FirstError_REC (8 items)
4144:00 MML_FirstError_REC.SubIndex 000 7 (16#07)
4144:01 MML_FirstError_REC.Code_I32 10033 (16#00002731)
4144:02 | MML_FirstError_REC.Group_\'S Axis
4144:03 | MML_FirstError_REC.Text_V5 Safe Torgue Off input active
4144:04 MML_FirstError_REC.Data_0OSTR oooooooon
4144:05 MML_FirstError_REC.Line_I32 -1 (16#FFFFFFFF)
4144:06 | MML_FirstError_REC.ParamFamily_I16 -1 (16%FFFF)
4144:07 | MML_FirstError_REC.ParamIndex_I16 -1 (16#FFFF)

This object stores the Mint (MML) error description and error code (as indicated by the seven segment display on the drive) for the
first error detected in sub-indexes of object Ox4144. If multiple errors occur (e.g. loss of an encoder input may also result in an over-
speed trip or following error very shortly afterwards) only the first (root cause) error is recorded - this is sufficient for most, if not all,
applications.

Subindex 0x03 contains the error description and subindex 0x01 contains the error code (as shown above).

The rising edge (from FALSE to TRUE) of the CIA402 function block ‘drive_fault’ output can be used to call additional function
blocks to make SDO calls to these objects (see application note AN00242 for further information about the use of SDO access via
EtherCAT).

This application note includes an export file for a pre-written function block that will return the error description and error code and
this is also included in the sample Automation Builder project. This function block in turn makes use of another ABB function block
created to simplify SDO reads of 32 bit integer objects. This function block can be included by importing the SDO access export file

ABB Motion control products 4 Power and productivity "“Islg

new.abb.com/motion for a better world™

Application note Accessing drive error data via EtherCAT AN00252

from application note AN00242 (this exp file is also included with this application note for convenience). The screenshot below
ilustrates the typical use of this function block...

readFirstErrord

FEBReadFirstDriveError
ciafxis0.drive_fault{xExecute xDaone
1-{bSlot ¥Err—
1001-{dwMode wErMo—

diErrCode—diFirstErrCode=10033
strError—strrirstDriveError="Safe Torque Off input active’

The following table details the input and output parameters for FBReadFirstDriveError:

Input parameter Data type Description

XExecute BOOL Rising edge on this input will cause the function block to attempt to read the drive error
code and description

bSlot BYTE Slot number of the EtherCAT coupler being used by the PLC

dwNode DWORD Node ID for the drive to be accessed

Output parameter | Data type Description

xDone BOOL Becomes TRUE when the function block completes (successfully or otherwise)

XErr BOOL Becomes TRUE if the function block encounters an error trying to read error data from the
specified drive

WErrNo WORD Provides an error code to explain the reason for the function block returning TRUE on XErr
(refer to the Automation Builder Help system for detailed explanations for these error codes

diErrCode DINT Provides the drive’s (Mint/MML) error code (as will be indicated via the drive’s seven
segment display)

strError STRING This is the error description retrieved from the specified drive

Contact Us

For more information please contact your

local ABB representative or one of the following: © Copyright 2016 ABB. All rights reserved.

Specifications subject to change without natice.
new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

EtherCAT® is a registered trademark and patented technology, licenced by Beckhoff Automation GmbH, Germany

ABB Motion control products 5 Power and productivity "“Iglg

new.abb.com/motion for a better world™

