
ABB Motion control products 1
new.abb.com/motion

The Mint Workbench installation process allows the user to either
install the full software suite or just the Mint ActiveX components.
Either way, the installed ActiveX components can be utilised by
any development environment supporting controls build using the
Component Object Model (COM)

Introduction
A key advantage of ActiveX controls is that they can be used in applications written in many programming languages, including
development environments such as:

- Microsoft Visual C++
- Microsoft Visual Basic
- Borland Delphi
- National Instruments LabView
- Microsoft Visual Basic for Applications (VBA)
- ABB’s Zenon SCADA package
- Rockwell Software’s RSView® SCADA package
- Any development environment supporting the use of COM controls

COM provides the platform for simple, easy to use connectivity between these applications and Mint controllers.

The Mint ActiveX controls are installed as part of Mint Workbench (freely downloadable from new.abb.com/motion).
There are Workbenches and ActiveX controls suitable for all Windows versions and support for x64 bit applications is provided
with build 5852 onwards – please refer to the Workbench page on the support site for full details.

For the purposes of this Application Note we will illustrate how Visual Basic for Applications (VBA) can be used within RSView®
to communicate with (and control) a NextMove via a USB connection. The same principles apply to all Mint controllers (we will
highlight specific differences throughout the text – for example, how to connect to an Ethernet based controller such as
MicroFlex e190).

It may also be useful to make reference to the other application notes in the ActiveX section of the support website as well as
the ‘ActiveX Programming’ section of the Mint Help file within Workbench.

Motion Control Products

Application note
Interfacing RSView® with Mint controllers

AN00158
Rev B (EN)

http://www.abb.com/motion.com

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 2
new.abb.com/motion

Getting Started
If you intend to follow the practical example in this application note you will need the following:

- A PC running Windows XP with a USB connection
- A copy of Rockwell Software’s RSView32 Works ® (Version 7.2.00 onwards)
- A copy of Mint Workbench (Build 5560 onward)
- A NextMove motion controller with USB connectivity (e.g. ESB-2 or e100). It is suggested that you initially setup a virtual

axis as Axis 0 with Mint Workbench. Make a note of the controller’s USB node address (e.g. Node 2) and the Mint
SCALEFACTOR that has been set for the axis (e.g. 4000)

Start RSView32 Works ® and start a new project. The first thing we must do is include a reference to the Mint ActiveX control in
the RSView® project.

On the ‘Edit Mode’ tab of the RSView® project explorer double-click the ‘Logic and Control’ folder…

This reveals a number of options including the ‘Visual Basic Editor’ – double click this to open the VBA programming
environment.
From the VBA menu select Tools>References…

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 3
new.abb.com/motion

Now click on the Browse button, navigate to the Workbench install directory (e.g. C:\Program Files\Mint Machine Center or
C:\ProgramData\Mint Workbench\Firmware depending on operating system in use and Workbench version) and select ‘ActiveX
Controls (*.ocx) from the ‘Files of type’ dropdown…

Select the latest ActiveX version (in our case, when we wrote this document, we used MintControls5560.ocx but if you’re using
a later Workbench you may find a later version) and click the ‘Open’ button. MintControls Build 5560 (or whatever build you
selected) will now appear in the list of project references – Click OK.

You will now be back in the editor window for the ‘General Declarations’ section of the ‘ThisProject’ RSView® object. We can
now create an instance of a Mintcontroller object using the following two lines of code…

Public WithEvents Mintcontroller As MintControls5560Lib.Mintcontroller
Dim NMESB As New Mintcontroller

We were using a NextMove ESB-2 so we called our object NMESB. It’s a good idea to keep to a short name as this will be
typed a lot in a large project!
Also add the following variable declaration…

Dim bControllerOK As Boolean

We will use this later to indicate to the rest of the code whether or not the controller has been connected successfully or not.

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 4
new.abb.com/motion

Establishing Communication
Before the ActiveX control can be used to issue any Mint commands we need to establish a communications link between
RSView® and the Mint controller. When our RSView® project starts (i.e. enters Run Mode) it would be good if it could
automatically establish this connection. To do this we will create a VBA subroutine (again in the General section of the
‘ThisProject’ object) as follows…

Sub Init()
 On Error GoTo ErrHandler
 Dim lBuild As Long
 NMESB.SetUSBControllerLink 2
 lBuild = NMESB.AAABuild
 bControllerOK = True
 Exit Sub

ErrHandler:
 bControllerOK = False
 MsgBox "Failed to Connect to Mint Controller"

End Sub

This code configures a USB connection to Node 2 and then checks that the controller is present by reading back the firmware
build version. If it fails to communicate correctly then a Windows Messagebox informs the user. The variable bControllerOK then
indicates (True/False) whether the controller is connected.

The table below details which ActiveX method should be selected to connect to a particular Mint controller…

Controller Connection Type ActiveX Method
NextMove ESB-2 Serial (RS232/RS422) setSerialControllerLink

NextMove ESB-2 USB setUSBControllerLink
NextMove e100 Serial (RS232/RS422) setSerialControllerLink
NextMove e100 USB setUSBControllerLink
NextMove e100 Ethernet setEthernetControllerLink

MicroFlex e190 Ethernet setEthernetControllerLink
MotoFlex e180 Ethernet setEthernetControllerLink

We now need to setup RSView® to automatically call our VBA Init subroutine on startup. To do this double-click the ‘Macro’
icon in the Edit Mode project explorer window…

This opens RSView’s macro editing window. Here we need to use the VbaExec command to call our VBA subroutine.

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 5
new.abb.com/motion

Enter the following code into the Macro editor…

Close this window, RSView® will ask you to save the macro (we called ours Connect).

In the RSView® project explorer double-click the System icon and then double-click the Startup icon.…

This open a new dialog with two tabs (Preferences and Startup). Select the Startup tab and then tick the ‘Startup Macro’
checkbox to show we want to run the Connect macro we just created ….the dropdown box to the right allows us to select from
all available macros but at this stage we have only created the one macro.

Click OK to save these settings. We are now ready to test the connection to the controller and the operation of our macro and
VBA code.

Switch to the ‘Run Mode’ tab on the RSView® project explorer and click the ‘Start Project’ button. If a Windows message box
appears stating the connection failed then you need to check the physical connection to the controller, check the baud rate etc..
(if using a serial controller) and reread this application note to ensure you have followed the instructions correctly. Otherwise, if
no message appears then, everything is working and it’s time to create a screen to display some data and provide a means of
sending commands to the controller – Click on the ‘Stop Project’ button and return to the ‘Edit Mode’ tab.

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 6
new.abb.com/motion

Creating a RSView® Screen
Now we’ve established a connection we can consider how to read and write data. For the purposes of this application note we’ll
add a command button (to issue a relative move) and a numeric label (to display axis position) to a screen.

Double-click the ‘Graphics’ icon in the RSView® project explorer and then double-click the ‘Display’ icon…

RSView® will now display a blank tempate for a new screen. Select the ‘button’ tool from the toolbar and click and drag on the
screen to draw a button…

Having drawn the button RSView® will display the button configuration dialog. Configure the button as shown below…

This sets up the button to call a VBA subroutine called doMove whenever the button is pressed (we will write this routine in a
moment).

If you like you can also use the ‘Up Appearance’ and ‘Down Appearance’ tabs to configure a caption for the button (we added
the text ‘MOVE’ to each).
Now select the Numeric display toolbar button and draw a box for a numeric label on the screen…

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 7
new.abb.com/motion

RSView® will now display a dialog to allow you to setup this numeric display. In our case we want it to display the value of a
RSView® tag called ‘Pos0’ (we will create this tag in a moment) so edit the dialog so it looks like this…

Click OK and RSView® will detect that the tag called Pos0 does not exist. Say Yes to create it now…

Your finished screen should look something like this…

Close the window and save the screen when prompted (we called ours ‘Main Screen’). RSView® will now show this in the list
of available screens.

Now select the Startup icon in the RSView® Project Explorer again and now setup our new screen as the Initial Graphic (on
the Startup tab)…

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 8
new.abb.com/motion

Before we look at the code required to display the axis position we’ll now create the VBA subroutine to issue the Move
command (i.e. the doMove routine we programmed for the button). Either use ALT+TAB to switch back to the VBA editor or
double-click ‘Visual Basic Editor’ in the RSView® Project Explorer and then enter the following code…

Sub doMove()
 On Error GoTo ErrHandler
 If bControllerOK Then
 If NMESB.DriveEnable(0) = False Then
 NMESB.DriveEnable(0) = True
 NMESB.DoWait (100)
 End If
 NMESB.MoveR(0) = 100
 NMESB.DoGo1 (0)
 End If
 Exit Sub

ErrHandler:
 MsgBox "Error issuing move : " & Err.Description
End Sub

This code checks if axis 0 on the controller is enabled (and enables it if it isn’t) and then issues a relative move of 100 user
units.

Although we haven’t written any code to display position yet we could at this stage run the Project and check that the axis
moves when we click on the button (Start Mint Workbench and use the Axis or Monitor tabs in the Spy Window to check the axis
is moving…unless you’re using a real axis of course in which case it should be a little more obvious!!).

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 9
new.abb.com/motion

Displaying Data
RSView® (and VBA) does not provide a timer object (like that found in Visual Basic for example) so we must use RSView’s
‘Derived Tags’ and ‘Events’ features to create our own timer mechanism.

Firstly double-click ‘Tag Database’ in the Project Explorer….the resulting dialog will show the Pos0 tag we created earlier…

Click the ‘New’ button and create a new tag called TimerTag1 as follows…

Now click on ‘Accept’ and then create another tag called TimerTag2 (the setup of this is identical to TimerTag1 but should have
an initial value of 1 instead). Accept the second tag and close the dialog.

Now double-click ‘Derived Tags’ in the RSView® Project Explorer…

Enter TimerTag1 as the derived tag name and complete the expression as shown below…

Accept this, click on the second row in the Derived Tags table and then enter the following to define TimerTag2…

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 10
new.abb.com/motion

Accept this too and you should end up with two derived tags as shown below…

Whilst the derived tag setup dialog is still open select Setup>Derived Tag Setup… from the main menu

Ensure this particular tag file (which just contains our two timer tags) is setup as ‘Periodic’ and enter an appropriate evaluation
interval (the display will actually update at double this time so we entered 0.5 seconds to allow the display to update once every
second).

Close the Derived Tag setup window and RSView® will ask you to save this and name the DTS file (we called ours Timer).

Now we need to create a RSView® Event – in this case we want to create an Event whenever our TimerTag1 tag goes from 0
to
1…

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 11
new.abb.com/motion

Double-click the ‘Events’ icon in the RSView® Project Explorer…

The following dialog shows how to setup an event that runs a VBA routine called UpdateDisplay (which we will add to our VBA
code later) whenever Timertag1 switches from 0 to 1…

Accept this and then select the Setup>Event Setup… menu. We need to run the event detection at least twice the rate the
derived tags are evaluated to ensure we don’t miss the 0->1 transition of our TimerTag1 so set the evaluation period to 0.2

seconds…

Click OK and then close the Event setup dialog and save the resulting EDS file (we called ours Timer Event).

We now have to configure RSView® so it starts our Derived Tag file and Event detection file on Startup. Double-click the
Startup icon in RSView’s Project Explorer again and setup the Startup tab as shown below…

Application note Interfacing RSView® with Mint controllers AN00158

ABB Motion control products 12
new.abb.com/motion

Now we need to create the UpdateDisplay VBA subroutine. This code will read the position of Axis 0 from the Mint controller
and assign this to our ‘Pos0’ RSView® tag. Switch to the VBA editor again.

Firstly we need to create a tag variable so add this code below our other declarations…

Dim Pos0 As Tag

Now add the following subroutine to the VBA code…

Sub UpdateDisplay()
 If bControllerOK = True Then
 Set Pos0 = gTagDb.GetTag("Pos0")
 Pos0.Value = NMESB.Pos(0)
 End If
End Sub

We are now ready to Run the project and test the full operation – Start the project, click the Move button and if you’ve followed
these instructions correctly your axis will move and the label will show the current axis position.

RSView is a registered trademark of Rockwell Automation, Inc

Contact us
For more information please contact your
local ABB representative or one of the following:

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

© Copyright 2012 ABB. All rights reserved.
Specifications subject to change without notice.

