
ABB Motion control products 1
new.abb.com/motion

Seamless high speed serial communication
between HMI and motion products

Introduction
The CP600 range of intelligent HMI panels is able to communicate with other peripherals (e.g. AC500 PLCs, ABB motion
products) via a selection of communication protocols. This application note details how these HMIs can interface with ABB
motion products via Modbus RTU. For general guidance on the use of Panel Builder 600 please refer to ABB manual
2CDC159007M0201.

To configure a CP600 HMI to communicate with an ABB motion control product via Modbus RTU requires Panel Builder 600
version 1.80.00.34 (or later). Please contact your local Sales office if you need to update your existing version of this software.

Integrated Modbus RTU support is available on the following active ABB motion control products:

¾ NextMove ESB-2
¾ NextMove e100

Refer to application note AN00198 for further details on the operation of Modbus RTU on these products.

Modbus RTU uses a serial-based physical medium (either RS232, 2 wire RS485 or 4 wire RS422 depending on product).

Refer also to application note AN00199 for details on connecting CP600 HMIs to ABB motion control products via Modbus TCP.

Motion Control Products

Application note
Connecting CP600 to motion products via Modbus RTU

AN00200
Rev E (EN)

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 2
new.abb.com/motion

Motion product configuration
Integrated Modbus RTU operation is included with the following firmware versions:

NextMove e100 - firmware version 5633 (or later)
NextMove ESB2 - firmware version 5424 or later (compiler Target Format 13) or firmware version 5454 or later (compiler Target
Format 14)

As Modbus RTU is a serial-based protocol it is vital to ensure the motion product’s serial node address is set using either
BUSNODE(_busSERIAL1) in a Mint program or via the “Connectivity” screen within Mint Workbench, Address 0 should be
avoided as this is reserved for broadcast functions.

It is also necessary to set the required baud rate either using SERIALBAUD(_TERM1) in a Mint program or via the
“Connectivity” screen within Mint Workbench, The motion products do not support operation of Modbus RTU at 9600 baud and
there are limited selections of baud rate for the CP600 HMIs. Therefore the selection of baud rate is restricted to one of the
following:

¾ 19200
¾ 38400
¾ 57600

All Modbus parameters are configured via the MODBUSPARAMETER Mint keyword.
Before enabling Modbus operation it is necessary to set the correct byte and word order to suit the connected Modbus client
(master), in this case the CP600 HMI, and to configure how Modbus registers in the received data packets are mapped to
internal data areas in the Mint controller (see also application note AN00198).

As ABB PLC products use big endian byte order and big endian word order the Mint program needs to ensure the relevant
Modbus parameters are set accordingly (via the MODBUSPARAMETER keyword, typically as part of the Mint Startup module)
to ensure connectivity between the CP600 HMI and any other networked ABB Modbus RTU devices (e.g. an AC500 PLC):

Example Mint code – Mint Modbus RTU slave connected to CP600 using Comms array
BUSNODE (_busSERIAL1) = 3 ‘Mint controller is node 3
SERIALBAUD (_TERM1) = 57600 ‘Using 57600 baud
MODBUSPARAMETER (_busSERIAL1, _mpBYTE_ORDER) = 0 ‘Use big endian byte order
MODBUSPARAMETER (_busSERIAL1, _mpWORD_ORDER) = 0 ‘Use big endian word order
MODBUSPARAMETER (_busSERIAL1, _mpREGISTER_MAPPING) = _rmCOMMS_ARRAY
MODBUSPARAMETER (_busSERIAL1, _mpENABLE) = 1

NextMove ESB-2 only supports mapping of the Comms array to Modbus registers. When using NextMove e100, as an
alternative to the Comms array, it is also possible to map Net Data locations to Modbus registers by setting the
_mpREGISTER_MAPPING parameter to _rmNET_DATA.

Most new applications using NextMove e100 are likely to utilise NetData as there are 1000 of these (as opposed to 99 Comms
locations) and 32 NetData events (as opposed to only 10 Comms events).

Applications using NextMove ESB-2 are restricted to 5 Comms events (1 to 5). The operation of Mint events is detailed later in
this document.

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 3
new.abb.com/motion

Register Mappings
All CP600 Modbus functions target a common data area in the Mint controller, as set by the Mint keyword ModbusParameter
(_mpREGISTER_MAPPING). These data areas have a fixed mapping with respect to the Modbus registers used by the HMI as
shown by the table below (equivalent AC500 addresses are also shown for reference):

Server Modbus
register

AC500 address Mint Comms array
(Comms=Real, Commsinteger = DWord)

Mint Netdata array
(Netfloat = Real, Netinteger = DWord)

0 %MW0.0
%MD0.0

Invalid
Invalid

Element 0 MSW
Element 0

1 %MW0.1 Invalid Element 0 LSW

2 %MW0.2
%MD0.1

Element 1 MSW
Element 1

Element 1 MSW
Element 1

3 %MW0.3 Element 1 LSW Element 1 LSW
4 %MW0.4

%MD0.2
Element 2 MSW

Element 2
Element 2 MSW

Element 2
5 %MW0.5 Element 2 LSW Element 2 LSW

… --- --- --- --- --- ---
198 %MW0.198

%MD0.99
Element 99 MSW

Element 99
Element 99 MSW

Element 99
199 %MW0.199 Element 99 LSW Element 99 LSW
200 %MW0.200

%MD0.100
Invalid

Invalid
Element 100 MSW

Element 100
201 %MW0.201 Invalid Element 100 LSW
202 %MW0.202

%MD0.101
Invalid

Invalid
Element 101 MSW

Element 101
203 %MW0.203 Invalid Element 101 LSW
… --- --- --- --- --- ---

1996 %MW0.1996
%MD0.998

Invalid
Invalid

Element 998 MSW
Element 998

1997 %MW0.1997 Invalid Element 998 LSW
1998 %MW0.1998

%MD0.999
Invalid

Invalid
Element 999 MSW

Element 999
1999 %MW0.1999 Invalid Element 999 LSW

LSW – Least Significant Word : MSW – Most Significant Word

HMI Protocol Configuration
Having started Panel Builder 600 and launched a new project you will be presented with a blank screen representing the first
page of your HMI application. At the left of the screen is the “ProjectView” which shows a tree structure of the available
functions within the HMI project.

Expand the “Config” folder if necessary and then double-click the “Protocols” icon…

Now click on the “+” button to add a protocol to the HMI project…

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 4
new.abb.com/motion

A dropdown control appears under the PLC heading, click on this to display the list of available protocols…

We need to select the ABB Modbus RTU protocol. This is a client (master) protocol that allows the CP600 HMI to communicate
with both ABB PLCs and motion control products. The ABB versions of Modbus protocols differ from the generic Modbus
protocols available in two ways:

1. The ABB Modbus protocols use big endian word order for data encoded into the Modbus data packets
2. The ABB Modbus protocols allow PLC specific addresses to be utilised in preference to generic Modbus registers

Note that there are no ABB specific versions of the Modbus Server protocols (so the CP600 HMI would usually be used as a
master device when connecting to ABB products).
Having selected ABB Modbus RTU the software will now ask us to configure the connected devices…

If the HMI is connected to a single Modbus RTU slave device (e.g. NextMove e100 or AC500 PLC) there is no need to select
the ‘PLC Network’ check box. If there are multiple slave devices connected to the HMI then it is essential this box is selected
(for the purposes of this application note we will select this option).

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 5
new.abb.com/motion

The dialog changes slightly and now includes an additional area showing the slave devices that have been added to the
Modbus RTU network.
Click on the ‘Add’ button…the software now asks the user to enter details about the connected slave device….

Our ABB motion product (a NextMove e100) we’re using for this example has a serial node address of 1 (where this was set
either by BUSNODE(_busSERIAL1) or via Mint Workbench) so we’ve entered this as the Node ID.
The Timeout (in ms) is how long the HMI will wait for a reply from the connected slave(s) before deciding a particular
communication transaction has failed. Typically the responses should occur within 10ms so the default timeout of 1 second
(1000ms) is adequate.
The delay setting determines how long the HMI waits before processing further Modbus transactions. If this is set to 0 the HMI
will read/write data as quickly as possible (e.g. after reading data from the slave it will read again with no delay). In practise
there’s no point updating the HMI this quickly (and the more frequently we communicate with the controller the greater the
loading on the connected slave processors) so a setting of 20 to 200ms is more typical.
Num of repeats sets how many times the HMI attempts a particular Modbus transaction before deciding a communication error
has occurred. The default value of 2 is adequate for all applications.
Finally we need to select a PLC model. When using Modbus RTU we are able to select either a NextMove ES/ESB-2 or an
e100 motion product (e150 motion product is also listed as a legacy product). For this example we’ll select an e100 motion

product.

The software returns to the previous screen and now shows our configured node in the list of slave controllers. To add another
slave device repeat the above process. To modify any settings, highlight the slave controller and click on the “Modify” button.
Once all the required slave devices have been added click on the “Comm…” button. We can now setup the properties of the
HMI’s serial port to suit the connected slave devices…

For HMIs with a single 9 way d-type connector select “Com1” as the required port. If the HMI has more than one serial port set
‘Port’ to match whichever port is physically wired.

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 6
new.abb.com/motion

Baudrate should be set to match the connected slave device(s) – e.g. to match SERIALBAUD(_TERM1) of the connected
motion product (remember that 9600 is not supported by ABB motion products).
For connection to an ABB motion products, Parity should usually be set to “None”, Data Bits should usually be set to “8”, and
Stop bits should usually be set to “1” (only the legacy MicroFlex e150 drive allowed configuration of these settings – the default
settings are None/8/1 to match all other motion products).

The Mode setting depends on the connected slave device. The table below shows the possible connection options for our active
products:

Connection Type NextMove e100 NextMove ESB-2 AC500 AC500 Eco
RS232 Yes Yes (by variant) Yes No

2 wire RS485 No No Yes Yes
4 wire RS422 Yes Yes (by variant) No No

Click on “OK” to accept the communication parameters and then “OK” again to confirm the list of connected slaves.
Configuration of the protocol is now complete.

Creating Tags
Having configured the Modbus RTU protocol we can now start to create Tags to use throughout the HMI project. ABB motion
products do not support Tag Export functions (unlike the PLC products) so Tags must be entered manually.
Double-click the “Tags” icon in the ProjectView window…

The Tag list screen now appears in the right hand pane. A filter at the top of this screen allows the user to select whether they
wish to view Tags associated with a specific protocol or all Tags in the project (for example, if the HMI is being used as a
Gateway between Modbus RTU and Modbus TCP there will be two protocols in use and there will be Tags associated with each
of these protocols).

Click on the “+” button to create a new Tag…
If we selected “PLC Network” earlier when configuring our protocol the software will ask us to select which of the connected
controllers the Tag relates to (in this example we only have a single controller)…

Now select the “Field” tab….

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 7
new.abb.com/motion

The field tab lets us program which memory location in the motion controller the Tag relates to. The available ‘Memory Type’
selections are specific to the PLC model selected as shown by the table below:

PLC Type Comms Array Net Data
NextMove ES/ESB-2 Yes No
E100 motion product Yes Yes

You should ensure that all tags used in the HMI project are setup to use a single Memory Type (i.e. do not attempt to mix
memory types in the same project).
There is a third Memory type available (NO_IP)….this is not currently used.

The other entries on this dialog are as follows:

Offset- - this relates to the index into the Comms Array or Net Data area - e.g. 3 to access Comms(3)
Subindex – this entry varies depending on the data type. For Boolean (bit) level data the subindex can be 0 to 31
(corresponding to the 32 bits in a commsinteger or netinteger location). For Byte level data the subindex can be 0 to 3 (where 0
is the least significant byte). For Word level data the subindex can be 0 or 1 (where 0 is the least significant word).
Data type – select from Boolean, Byte (signed 8 bit integer), Short (signed 16 bit integer), Int (signed 32 bit integer),
unsignedByte, unsignedShort, unsignedInt, Float (32 bit IEEE) or String
Arraysize – only used if String data type selected. Specifies the number of characters/bytes to be used by the string. A
commsinteger/netinteger location can store up to 4 characters so if an array size of more than 4 is specified then subsequent
data locations are used to store the additional characters - e.g. If a tag was configured to use Comms Array Offset 1 as a String
and “ABCDEF” was to be stored this would result in 0x41424344 (“ABCD”) being stored in Commsinteger(1) and 0x45460000
(“EF”) being stored in Commsinteger(2).
Conversion – this entry allows the user to add a translation to (e.g. word swap) the data
Index – this setting is not used.
So as an example, if we needed a Tag to use in conjunction with a lamp in the HMI project (i.e. a Boolean/bit value) and we
wanted this to relate to Bit 19 of NetData 2 in our ABB e100 motion product (e.g. NextMove e100) we would setup our Tag as
shown below:

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 8
new.abb.com/motion

If we now click OK the software allows us to enter a name for our newly created Tag…

We can now click on the “+” button again to continue to add Tags to the project.

Using Modbus data in Mint programs on ABB motion products
The table below shows how various data types are likely to be used by a Mint program:

Data Type Comms Array NetData Array

Boolean CommsInteger NetInteger
Byte (signed or unsigned) CommsInteger NetInteger
Short (signed or unsigned) CommsInteger NetInteger

Int (signed or unsigned) CommsInteger NetInteger

String CommsInteger NetInteger
Float Comms NetFloat

The simplest way to access data with widths less than 32 bits (i.e. bits, bytes and words) in a Mint program is via the Mint
BITFIELD keyword (only supported by firmware using compiler Target Format 14 or greater – i.e. NextMove ESB-2 running
5454 or later or NextMove e100).

If we use our previous example where we configured an HMI tag related to Bit 19 of NetData location 2, our Mint program could
contain the following code to read this bit from the HMI…

Bitfield BitData
DoubleWord As 0 to 31

Bit0 As 0
Bit1 As 1
Bit2 As 2
Bit3 As 3

 Etc…
Bit19 As 19
Bit20 As 20
Etc…

End Bitfield

Dim HMIBitData As BitData
HMIBitData.DoubleWord = NETINTEGER(2) ‘Read all 32 bits into a bitfield variable

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 9
new.abb.com/motion

OUTX(0) = HMIBitData.Bit19 ‘Set output 0 according to the value written by the HMI

…and we could then use the following code to write to this bit…

HMIBitData.Bit19 = INSTATEX(1) ‘set bit 19 to reflect the state of input 1 on the controller
NETINTEGER(2) = HMIBitData.DoubleWord

Similar BitField types could be used to encode Byte and Word level data…

BitField ByteData
DoubleWord As 0 to 31
Byte0 As 0 to 7
Byte1 As 8 to 15
Byte2 As 16 to 23
Byte3 As 24 to 31

End BitField

BitField WordData
DoubleWord As 0 to 31
Word0 As 0 to 15
Word1 As 16 to 31

End BitField

For controllers not supporting the BITFIELD keyword (e.g. NextMove ESB-2 running firmware version 5424) data less than 32
bits wide must be extracted using the logical OR, AND, NOT functions for example.

Examples:
Dim nNetData2Bit19 As Integer
nNetData2Bit19 = ((NETINTEGER(2) & 0x00080000) > 0)

Dim nNetData2Word1 As Integer
nNetData2Word1 = SHIFT((NETINTEGER(2) & 0xFFFF0000), 16)

Accessing 32 bit data (int or Float) is much simpler, the Mint program just needs to utilise COMMS, COMMSINTEGER,
NETFLOAT or NETINTEGER according to the setting of Modbus parameter _mpREGISTER_MAPPING and the programmed
HMI data type.

For string data either COMMSINTEGER or NETINTEGER data should be used. Strings are made up of character data where
each character is an eight bit (byte) value. Therefore each COMMSINTEGER or NETINTEGER location is capable of storing 4
characters. If the HMI Tag has been programmed to store more than 4 characters then successive locations are utilised as
required.

Example:
A label on our HMI screen needs to display text up to 10 characters in length. The screenshot below shows how a Tag could be
programmed to allow this (using COMMSINTEGER(1) or NETINTEGER(1) depending on the register mapping setup by the
Mint program)…

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 10
new.abb.com/motion

The ‘ArraySize’ field in the dialog determines the number of characters the string Tag can store. In this case 10 characters
means the HMI will access COMMSINTEGER(1), COMMSINTEGER(2) and the top 16 bits of COMMSINTEGER(3).

The table below illustrates some example strings (use of COMMSINTEGER has been assumed for this example):

CommsInteger (1) CommsInteger (2) CommsInteger (3) HMI String Display

0x41424344 (hex) 0 0 “ABCD”
0x41424344 (hex) 0x45460000 (hex) 0 “ABCDEF”
0x41424344 (hex) 0x45464748 (hex) 0 “ABCDEFGH”
0x41424344 (hex) 0x45464748 (hex) 0x494A0000 (hex) “ABCDEFGHIJ”

0x41424344 (hex) 0x45464748 (hex) 0x494A7691 (hex) “ABCDEFGHIJ”
0 0x45464748 (hex) 0x494A0000 (hex) “”

0x41424344 (hex) 0 0x494A0000 (hex) “ABCD”
0x41420044 (hex) 0x45464748 (hex) 0x494A0000 (hex) “AB”

You can see from the above table that the bottom 16 bits of CommsInteger(3) are not used. Also, as soon as a NULL (ASCII
value 0) is encountered in the data the string is terminated, regardless of the contents of the remainder of the CommsInteger
locations.

Mint events
It is possible to associate Mint events / interrupts with Comms or NetData locations.

NextMove ESB-2 only supports the Comms array and will generate Mint Comms Events (1 to 5) whenever the HMI (or other
Modbus client) writes to one of the first five Comms locations. When using NextMove ESB-2 the data does not have to change,
whenever a Comms location is written to the event is raised.

If using a NextMove e100 it is possible to utilise Comms events and / or Netdata events. Comms events (1 to 10) and NetData
events (0 to 31) are raised whenever the data in the associated location is changed. Writing the same value to one of these
locations will not raise an event in Mint.

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 11
new.abb.com/motion

Physical connection
The table below shows the physical connection possibilities for Mint products supporting integrated Modbus protocols. AC500
and CP600 products are included for reference.

Connection
Type

NextMove e100 NextMove ESB-
2

AC500 AC500 Eco CP600

RS232 Yes Yes (by variant) Yes No Yes
2 wire RS485 No No Yes Yes Yes
4 wire RS422 Yes Yes (by variant) No No Yes

Ethernet Yes No Yes
Yes (by
variant)

Yes

When using Modbus RTU consideration must be given to the above table if there are multiple slave devices. For example, if the
system comprises a CP600 HMI as the Modbus master and a NextMove ESB-2 and AC500 Eco PLC as slave devices then it is
not possible to connect all of these together on the same serial network as they share no common connection types. A system
like this would require the HMI to operate using two protocols (e.g. Modbus TCP to the Eco PLC using the Ethernet PLC variant
and Modbus RTU to the NextMove ESB-2 using either RS232 or RS422).

The following tables show the pinouts of the various products for each connection type:

Connection
Type

NextMove e100 /
ES / ESB -2

AC500 AC500 Eco CP600

RS232

1 : Shield 1 : Shield

Not Available

1 : GND
2 : RXD 2 : TXD 2 : Not Used
3 : TXD 3 : Not Used 3 : TXD

4 : Not Used 4 : RTS 4 : RXD
5 : GND 5 : GND 5 : Not Used

6 : Not Used 6 : +5v (see note
2) 6 : +5v (see note 3)

7 : RTS 7 : RXD 7 : CTS
8 : CTS 8 : Not Used 8 : RTS

9 : DGND 9 : CTS 9 : Not Used

RS422

1 : Not Used

Not Available Not Available

1 : GND
2 : RXB/- (see note

4) 2 : Not Used

3 : TXB/- 3 : TX-
4 : Not Used 4 : RX- (see note 4)

5 : GND 5 : Not Used
6 : Not Used 6 : +5v

7 : TXA/+ 7 : RX+ (see note 4)
8 : RXA/+ (see

note 4) 8 : TX+

9 : Not Used 9 : Not Used

RS485 Not Available

1 : Shield 1 : Shield 1 : GND
2 : Not Used 2 : Not Used 2 : Not Used

3 : + (see note 5) 3 : + (see note 5) 3 : - (see notes 5,6)
4 : Not Used 4 : Not Used 4 : - (see notes 5,6)

5 : GND 5 : GND 5 : Not Used
6 : +5v (see note

2)
6 : +5v (see note

2) 6 : +5v

7 :Not Used 7 :Not Used 7 : + (see notes 5,6)
8 : - (see note 5) 8 : - (see note 5) 8 : + (see notes 5,6)

9 : Not Used 9 : Not Used 9 : Not Used

Notes:

1. The 7v output on MicroFlex / MotiFlex e100 and e150 products should not be connected. Ensure pin 4 at the e100
RJ12 connector is isolated from any external connection

2. Do not connect 5v output on PLCs to any external connection
3. Do not connect 5v output on CP600 to any external connection
4. When using RS422 ensure a 120 ohm terminating resistor is fitted across RX+ and RX- at each end of the serial

network (this may be via a terminator switch if one is provided on the product)
5. When using RS485 ensure a 120 ohm terminating resistor is fitted across + and – at each end of the serial network

(this may be via a terminator switch if one is provided on the product)

Application note Connecting CP600 to motion products via Modbus RTU AN00200

ABB Motion control products 12
new.abb.com/motion

6. To use the CP600 HMI in 2 wire RS485 mode you must link the two – pins (3 and 4) together and the two + pins (7 and
8) together

Example connections:
CP600 to NextMove e100/ESB-2 via RS232

1 5
3 2
4 3
7 7
8 8

CP600 to NextMove e100//ESB-2 via RS422
1 5
8 8
3 2
7 7
4 3

Contact us
For more information please contact your
local ABB representative or one of the following:

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

© Copyright 2012 ABB. All rights reserved.
Specifications subject to change without notice.

CP600
NextMove

CP600 NextMove120R

120R

