

ABB MEASUREMENT & ANALYTICS | SPECIFICA TECNICA

SensyTemp TSA101

Sensori di temperatura

Measurement made easy

Compatibile e versatile

Per termometri a resistenza ed elementi termici

Struttura

- Conforme allo standard IEC 43735
- Con isolamento minerale
- Con piastra di supporto

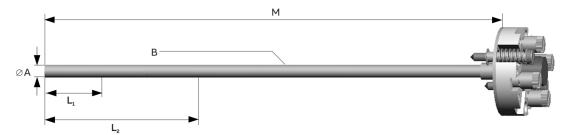
Omologazioni

- Montaggio in sensori di temperatura TSP omologati
- IECEX
- ATEX
- EAC Ex (GOST)
- NEPSI
- · Altre omologazioni su richiesta

Campi di applicazione

- Offshore ed aree prossime alla costa
- Estrazione e trasporto di petrolio e gas naturale
- Industria petrolchimica
- Industria chimica
- Produzione di energia
- Costruzioni meccaniche e di impianti
- Tecnica generale dei processi industriali
- Costruzione di serbatoi e di condutture

Panoramica dei kit di misura


Termocoppie a guaina e termometri a resistenza a guaina Zoccolo di ceramica con morsetti Trasduttore di misura fisso Conduttori di collegamento aperti M M

- Cavo rivestito ABB flessibile e resistente alle vibrazioni. Materiale del rivestimento per termometri a resistenza in acciaio CrNi 1.4571 (316Ti) o in lega al nichelio 2.4816 (Alloy 600) per termocoppie.
- Sensori secondo IEC 60751 termometri a resistenza al platino con campi di misura di -196 a 800 °C (-320,8 a 1472 °F) in tre classi di tolleranza o termocoppie secondo IEC 60584 e ANSI MC96.1 con campi di misura di -40 a 1200 °C (-40 a 2192 °F), ognuna in tre classi di tolleranza.
- Termocoppia tipo S in una classe di precisione di 0 a 1600 °C (32 a 2912 °F).
- Equipaggiamento con sensori semplici o doppi.
- · La grande corsa (10 mm (0,39 in)) delle molle di spinta sulla piastra di supporto del kit di misura genera una spinta ottimale.
- I kit di misura possono essere ordinati con diametro esterno di 3 mm (0,12 in), 4,5 mm (0,24 in), 6 mm (0,24 in), 8 mm (0,32 in, solo per termocoppie), 8 mm (0,32 in) punta con boccola e 10 mm (0,39 in) punta con manicotto.

M = lunghezza del kit di misura

_

Struttura

- A Diametro del kit di misura
- B Cavo rivestito con isolamento minerale, fili compattati in polvere di ossido di magnesio (MgO)
- M Lunghezza del kit di misura

Figura 1: struttura del TSA101

Attacco		
Base	Ø 42 mm (1,65 in)	
Distanza delle viti	Ø 33 mm (1,3 in)	
Grandezza delle viti	M4 × 1,5	
Corsa della molla	> 10 mm (0,39 in)	

- ${\it L}_{1}$ Lunghezza sensibile alla temperatura
- L₂ Lunghezza non piegabile

Dati tecnici

Termometri a resistenza

Grazie all'utilizzo di un cavo rivestito a isolamento minerale e di speciali elementi di misura (montaggio compreso), la resistenza alle vibrazioni di tutti i sensori di misura integrati nei sensori di temperatura TSP è molto elevata. I valori di accelerazione di 30 m/sec² (3 g) definiti per requisiti superiori secondo la norma IEC 60751 vengono superati da tutti i tipi di kit di misura dei sensori di temperatura TSP.

Le seguenti tabelle indicano la combinazione ottimale di campo di misura, diametro, precisione e resistenza alle vibrazioni.

Termoresistenza a film sottile (TFS) - Modello base

	Campo di misura	Resistenza alle
		vibrazioni
Classe B	Da -50 a 400 °C (da -58 a 752 °F)	100 m/sec² (10 g) bei 10
Classe A	Da -30 a 300 °C (da -22 a 572 °F)	bis 500 Hz
Classe AA	Da 0 a 100 °C (da 32 a 212 °F)	

	Sens	ore sem	plice	Sen	sore dop	pio
	2	3	4	2	3	4
	condutt	condutt	condutt	condutt	condutt	condutt
	ori	ori	ori	ori	ori	ori
3,0 mm, classe B	•	•	•			
3,0 mm, classe A		•	•			
3,0 mm, classe AA		•	•			
4,5 mm, classe B	•	•	•			
4,5 mm, classe A		•	•			
4,5 mm, classe AA		•	•			
6,0 mm, classe B	•	•	•	•	•	•
6,0 mm, classe A		•	•		•	•
6,0 mm, classe AA		•	•		•	•

Termoresistenza a film sottile (TFS) – Resistenza alle vibrazioni rafforzata

	Campo di misura	Resistenza alle
		vibrazioni
Classe B	Da -50 a 400 °C (da -58 a 752 °F)	600 m/sec ² (60 g) da 10
Classe A	Da -30 a 300 °C (da -22 a 572 °F)	a 500 Hz
Classe AA	Da 0 a 100 °C (da 32 a 212 °F)	

	Sens	ore sem	plice	Sen	sore do	opio
	2	3	4	2	3	4
	condutt	condutt	condutt	condutt	condutt	condutt
	ori	ori	ori	ori	ori	ori
3,0 mm, classe B	•	•	•			
3,0 mm, classe A		•	•			
3,0 mm, classe AA		•	•			
6,0 mm, classe B	•	•	•	•	•	•
6,0 mm, classe A		•	•		•	•
6,0 mm, classe AA		•	•		•	•

Termoresistenza a filo avvolto (TFA) – Campo di misura ampliato

	Campo di misura	Resistenza alle
		vibrazioni
Classe B	Da -196 a 800 °C	100 m/sec ² (10 g)
	(da -320,8 a 1472 °F)	da 10 a 500 Hz
Classe A, TFA semplice	Da -100 a 450 °C	
	(da -148 a 842 °F)	
Classe A, TFA doppia	Da 0 a 250 °C (da	
	32 a 482 °F)	

	Sens	ore sem	plice	Sen	sore do	opio
	2	3	4	2	3	4
	condutt	condutt	condutt	condutt	condutt	condutt
	ori	ori	ori	ori	ori	ori
3,0 mm, classe B	•	•	•	•	•	
3,0 mm, classe A		•	•		•	
4,5 mm, classe B	•	•	•	•	•	
4,5 mm, classe A		•	•		•	
6,0 mm, classe B	•	•	•	•	•	•
6,0 mm, classe A		•	•		•	•

... Dati tecnici

Termoresistenza a filo avvolto (TFA) – Campo di misura ampliato, resistenza alle vibrazioni rafforzata

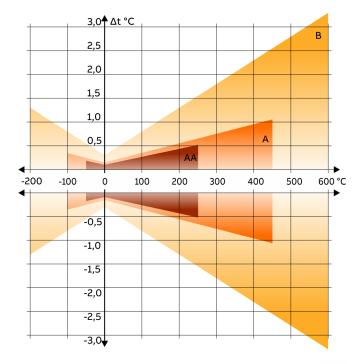
	Campo di misura	Resistenza alle
		vibrazioni
Classe B	Da -196 a 600 °C	600 m/sec ² (60 g)
	(da -320,8 a 1112 °F)	da 10 a 500 Hz
Classe A, TFA semplice	Da -100 a 450 °C	
	(da -148 a 842 °F)	
Classe A, TFA doppia	Da 0 a 250 °C (da	
	32 a 482 °F)	
· · · · · · · · · · · · · · · · · · ·		

	Sensore semplice			Sensore doppio		opio
	2	3	4	2	3	4
	conduttconduttconduttcondut				condutt	tcondutt
	ori	ori	ori	ori	ori	ori
6,0 mm, classe B	•	•	•	•	•	•
6,0 mm, classe A		•	•		•	•

Lunghezza delle punte del kit di misura

La tabella seguente indica la profondità di introduzione minima, la lunghezza sensibile alla temperatura e la lunghezza non piegabile sulla punta del kit di misura

Versione	Profondità di Lunghezza sensibile Lunghezza non			
	introduzione alla temperatura		piegabile	
	minima			
Modello base	70 mm	7 mm	30 mm	
	(2,75 in)	(0,28 in)	(1,18 in)	
Resistenza alle	70 mm	10 mm	40 mm	
vibrazioni rafforzata	(2,75 in)	(0,39 in)	(1,57 in)	
Campo di misura	70 mm	50 mm	60 mm	
ampliato, resistenza alle	(2,75 in)	(1,97 in)	(2,36 in)	
vibrazioni rafforzata				


Classi di precisione delle termoresistenze secondo IEC 60751

Sia le termoresistenze a film sottile che le termoresistenze a filo avvolto secondo IEC 60751 possono essere utilizzate sull'intero campo di applicazione. In questo caso può essere valida solo la classe di precisione del campo di temperatura utilizzato.

Esempio: un sensore di classe AA viene utilizzato a 290 °C (554 °F). Dopo l'utilizzo (anche di breve durata) per questo sensore vale la classe A.

Termoresistenza a film (SMW), incorporata				
Classe B	$\Delta t = \pm (0.30 + 0.0050 \times [t])$	Da -50 a 400 °C		
		(da -58 a 752 °F)		
Classe A	$\Delta t = \pm (0.15 + 0.0020 \times [t])$	Da -30 a 300 °C		
		(da -22 a 572 °F)		
Classe AA	$\Delta t = \pm (0.10 + 0.0017 \times [t])$	Da 0 a 100 °C		
		(da 32 a 212 °F)		

Termoresistenza a filo avvolto (TFA), integrata				
Classe B	$\Delta t = \pm (0.30 + 0.0050 \times [t])$	Da -196 a 600 °C		
		(da -320,8 a 1112 °F)		
Classe A	$\Delta t = \pm (0.15 + 0.0020 \times [t])$	Da -100 a 450 °C		
		(da -148 a 842 °F)		

Aree colorate:

Campo di temperatura secondo IEC 60751 (TFA)

Figura 2: Rappresentazione grafica delle classi di precisione

Errore di misura per circuiti a due fili

Nel collegamento a due conduttori, la resistenza elettrica dei conduttori interni di rame del kit di misura contribuisce al valore misurato e deve essere presa in considerazione. Essa dipende dal diametro e dalla lunghezza del kit di misura con cavo rivestito.

Se l'errore non può essere compensato, vale approssimativamente quanto segue:

- Ø kit di misura 3,0 mm: $(0,281 \Omega/m \Rightarrow 0,7 °C/m)$
- Ø Kit di misura 6,0 mm: $(0.1 \Omega/m \Rightarrow 0.25 \text{ °C/m})$

Per questo motivo ABB fornisce come standard circuiti a tre conduttori o circuiti a quattro conduttori.

Termocoppie

Le classi di precisione delle termocoppie sono conformi alla norma internazionale IEC 60584. Su richiesta, ABB fornisce anche la conformità alle norme ANSI MC96.1 e DIN 43710. Poiché i valori delle due norme differiscono di poco solo nell'intervallo di temperatura inferiore (fino a circa 300 °C), ABB suggerisce di impiegare termocoppie secondo IEC 60584. I dati delle tolleranze sono riportati nella tabella "Classi di precisione secondo IEC 60584".

La tabella seguente indica lunghezza sensibile alla temperatura, la profondità di introduzione minima e la lunghezza non piegabile sulla punta del sensore di temperatura.

Versione	Profondità di introduzione minima	Lunghezza sensibile alla temperatura	Lunghezza non piegabile
Resistenza alle	70 mm (2,76 in)	7 mm (0,28 in)	30 mm (1,18 in)
vibrazioni fino a			
600 m/s ² (60 g)			

	1K	2K	3K	13	23	1L*	2L*	1N	2N	1T	2Т	1E	2E	15	25
3,0 mm,	•	•		•	•	•	•	•	•						
classe 2															
3,0 mm,	•	•		•	•			•	•						
classe 1															
4,5 mm,	•	•													
classe 2															
4,5 mm,	•	•													
classe 1															
6,0 mm,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
classe 2															
6,0 mm,	•	•		•	•			•	•	•	•	•	•		
classe 1															

^{*} Tolleranza a norma DIN 43710

Classi di precisione a norma IEC 60584, DIN 43710 e ANSI MC96.1

IEC 60584	Classe	Campo di	Tolleranza massima
	(CL)	temperatura	
K (NiCr-Ni),	2	Da -40 a 333 °C (da	±2,5 °C (±4,5 °F)
N (NiCrSi-NiSi)		-40 a 631,4 °F)	
		Da 333 a 1200 °C (da	±0,0075 × [t]
		631,4 a 2192 °F)	
	1	Da -40 a 375 °C (da	±1,5 °C (±2,7 °F)
	_	-40 a 707 °F)	
		da 375 a 1000 °C (da	±0,004 × [t]
		707 a 1832 °F)	
J (Fe-CuNi)	2	Da -40 a 333 °C (da	±2,5 °C (±4,5 °F)
		-40 a 631,4 °F)	
		Da 333 a 750 °C (da	±0,0075 × [t]
		631,4 a 1382 °F)	
	1	Da -40 a 375 °C (da	±1,5 °C (±2,7 °F)
		-40 a 707 °F)	
		Da 375 a 750 °C (da	±0,004 x [t]
		707 a 1382 °F)	
T (Cu-CuNi)	2	Da -40 a 133 °C (da	±1,0 °C (±1,8 °F)
		-40 a 271,4 °F)	
		Da 133 a 350 °C (da	±0,0075 × [t]
		271,4 a 662 °F)	
	1	Da -40 a 125 °C (da	±0,5 °C (±0,9 °F)
	_	-40 a 257 °F)	
		Da 125 a 350 °C (da	±0,005 × [t]
		257 a 662 °F)	
S (Pt10%Rh-Pt)	2	Da 0 a 600 °C (da	±1,5 °C (±2,7 °F)
		32 a 1112 °F)	
		Da 600 a 1600 °C (da	±0,0025 x [t]
		1112 a 2912 °F)	
E (NiCr-CuNi)	2	Da -40 a 333 °C	±2,5 °C (±4,5 °F)
		(da -40 a 631,4 °F)	
	_	Da 333 a 900 °C (da	±0,0075 × [t]
		631,4 a 1652 °F)	
	1	Da -40 a 375 °C (da	±1,5 °C (±2,7 °F)
		-40 a 707 °F)	
	_	Da 375 a 800 °C (da	±0,004 × [t]
		707 a 1472 °F)	

... Dati tecnici

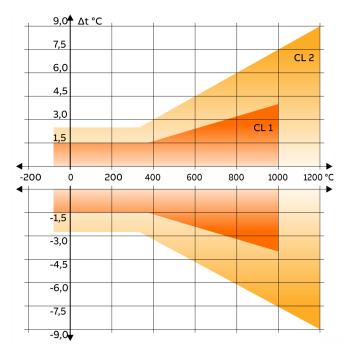


Figura 3: rappresentazione grafica delle classi di precisione, esempio dei tipi K e N a norma IEC 60584. Per altri tipi, vedere le tabelle.

DIN 43710	Campo di	Tolleranza massima
	temperatura	
L (Fe-CuNi)	Da 50 a 400 °C (da	±3,0 °C (±5,4 °F)
	122 a 752 °F)	
	Da 400 a 900 °C (da	±0,0075 × [t]
	752 a 1652 °F)	

ANSI MC 96.1	Classe (CL)	Campo di	Tolleranza massima
		temperatura	
K (NiCr-Ni),	Standard	Da 0 a 293 °C (da	±2,2 °C (±3,96 °F)
N (NiCrSi-NiSi)		32 a 559,4 °F)	
		Da 293 a 1250 °C (da	±0,0075 × [t]
		559,4 a 2282 °F)	
	Speciale	Da 0 a 275 °C (da	±1,1 °C (±1,98 °F)
		32 a 527 °F)	
		Da 275 a 1250 °C (da	±0,0040 × [t]
		527 a 2282 °F)	
J (Fe-CuNi)	Standard	Da 0 a 293 °C (da	±2,2 °C (±3,96 °F)
		32 a 559,4 °F)	
		Da 293 a 750 °C (da	±0,0075 × [t]
		559,4 a 1382 °F)	
	Speciale	Da 0 a 275 °C (da	±1,1 °C (±1,98 °F)
	_	32 a 527 °F)	
		Da 275 a 750 °C (da	±0,0040 × [t]
		527 a 1382 °F)	

Resistenza di isolamento del kit di misura

La resistenza di isolamento viene misurata tra il rivestimento esterno ed il circuito di misura. In caso di due circuiti di misura viene misurata inoltre la resistenza di isolamento tra i due circuiti

Grazie ad un metodo particolare adottato nel processo di produzione, i kit di misura ABB possiedono eccellenti valori di isolamento anche ad alte temperature.

Resistenza di isolamento $\mathbf{R}_{\mathrm{iso}}$

 \geq 500 M Ω nel campo di temperatura ambiente da 15 a 35 °C (da 59 a 95 °F)

Umidità dell'aria

< 80 %

Collegamenti elettrici

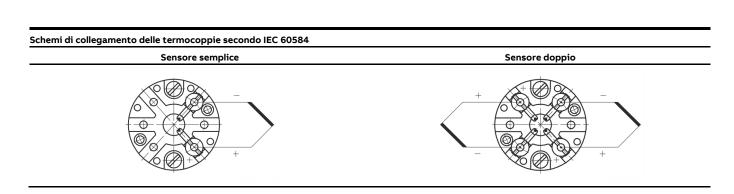
Nota

Per un corretto collegamento all'attacco di ceramica, sono determinanti le marcature cromatiche descritte e non i numeri sulla presa.

Schemi di collegamento e contrassegno a colori dei termometri a resistenza secondo IEC 60751

Sensore semplice

Circuito a due fili


Circuito a tre fili

Circuito a quattro fili

Rosso

W Bianco

Schemi di collegamento e contrassegno a colori dei termometri a resistenza secondo IEC 60751 Sensore doppio Circuito a due fili Circuito a tre fili Circuito a quattro fili R Rosso Y Giallo B Nero W Bianco

Trasduttore di misura

Il montaggio di un trasduttore di misura offre i seguenti vantaggi:

- Riduzione dei costi grazie alle ridotte esigenze di cablaggio,
- Amplificazione del segnale del sensore direttamente sul punto di misura e trasduzione in un segnale standard (con conseguente riduzione della sensibilità alle interferenze)
- Possibilità di montare un display LCD nella testa di connessione:
- SIL 2 con trasduttore di misura di classe corrispondente.

Il segnale di uscita di un sensore di temperatura viene determinato dalla scelta del trasduttore di misura. Nell'utilizzo dei trasduttori di misura ABB il riscaldamento intrinseco può essere trascurato.

Vengono offerti i seguenti segnali di uscita:

Tipo di trasduttore di misura

TTH200 HART®

da 4 a 20 mA, HART®

TTH300 HART®

Da 4 a 20 mA, HART®

TTH300 PA

PROFIBUS PA®

TTH300 FF

FOUNDATION Fieldbus® H1

Nota

Ulteriori informazioni sui trasduttori di misura riportati sopra sono indicate nelle specifiche tecniche DS/TTH200 e DS/TTH300.

Omologazioni, controlli e certificati

Omologazioni

I kit di misura TSA101 sono parti di ricambio per i sensori di temperatura TSP. Le omologazioni sono valide solo per il montaggio nei corrispondenti sensori di temperatura certificati.

Queste vanno dalle omologazioni metrologiche tramite omologazioni EX per i certificati ATEX validi per singoli paesi, per l'intera UE e per la Svizzera alle certificazioni IECEx riconosciute a livello internazionale.

Nello specifico, esse sono:

ATEX Ex i
 PTB 01 ATEX 2200 X
 ATEX Ex d
 PTB 99 ATEX 1144 X
 Ex ta polvere (Zona 20) BVS 06 ATEX E 029

Ex na / Ex ec (Zona 2), Staub-Ex tc (Zona 22)

Dichiarazione del produttore

- IECEx Ex i IECEx PTB 11.0111 X - IECEx Ex d IECEx PTB 12.0039 X - Ex ta polvere (Zona 20) IECEx BVS 17.0065 X

- GOST / EAC Ex i, Ex d
- NEPSI Ex i, Ex d
- Altre omologazioni su richiesta
- Ulteriori informazioni riguardo all'omologazione Ex degli apparecchi e un elenco delle norme, comprese le rispettive date di pubblicazione, alle quali l'apparecchio è conforme possono essere ricavati dalle certificazioni (certificato di omologazione UE) o dalle Dichiarazioni del costruttore (su www.abb.de/temperature).
- Anche i kit di misura TSA101 ABB secondo ATEX Ex i soddisfano la raccomandazione NAMUR NE24.

Collaudi e certificati

Per aumentare la sicurezza e la precisione del processo, ABB offre diverse prove meccaniche ed elettriche. I risultati vengono confermati con certificati secondo EN 10204. Vengono rilasciati i seguenti certificati:

- Certificato di fabbrica 2.1 per la conformità dell'ordine
- Certificazione di fabbrica 2.2, elementi di carica del termoelemento
- Certificato di collaudo 3.1 per le seguenti prove:
 - Controllo visivo, dimensionale e funzionale del sensore di temperatura
 - Controllo della tolleranza
 - Misura di confronto sul kit di misura

Per misure con requisiti particolarmente elevati di precisione, ABB offre la taratura dei sensori di temperatura nel proprio laboratorio DAkkS-.

Con una taratura DAkkS-, per ogni sensore di temperatura viene rilasciato un certificato di taratura. Le misure di confronto e le tarature DAkkS vengono eseguite sul kit di misura, eventualmente con trasduttore di misura.

Per ottenere risultati significativi, si raccomanda di rispettare una lunghezza minima del cavo rivestito con isolamento minerale del kit di misura.

- A temperature molto basse (< -70° C (-94 °F)): 300 mm
- A temperature da basse a medie: da 100 a 150 mm
- A temperature superiori a n 500 °C (932 °F): da 300 a 400 mm

Lunghezze maggiori consentono metodi di misurazione aggiuntivi e facilitano la procedura di misurazione. Per ulteriori informazioni, rivolgersi al partner ABB locale.

Per una misura di confronto e la taratura DAkkS- viene inoltre offerta la possibilità di calcolare la curva caratteristica del sensore di temperatura e di programmare un trasduttore di misura adatto mediante una curva caratteristica stile libero. Questo adattamento del trasduttore alla curva caratteristica del sensore consente di aumentare notevolmente l'accuratezza di misura del sensore di temperatura. A tal fine è necessario eseguire la misura con almeno tre temperature.

Il laboratorio di taratura DAkkS è accreditato per termometri a resistenza nel campo di temperatura da -35 a 850 °C (da 31 a 1562 °F) e per termocoppie nel campo di temperatura da -35 a 1200 °C (da 31 a 2192 °F).

Consiglio per la ricalibrazione

Valori approssimativi con temperatura di esercizio massima costante:

- 400 °C (752 °F) ricalibrazione entro 2 anni
- 200 °C (392 °F) ricalibrazione entro 5 anni

In funzione dei requisiti del processo (ad esempio, precisione aumentata, disponibilità dell'impianto, sicurezza) e con sollecitazioni superiori alla media (intese vibrazioni, frequenti e rapidi sbalzi termici, ecc.) è necessario ridurre i periodi di ritaratura.

Informazioni per l'ordine

Nota

I codici di ordinazione non possono essere combinati a piacere. Il partner ABB sarà lieto di offrire la sua consulenza sulla realizzabilità di un sistema. L'intera documentazione, le dichiarazioni di conformità, nonché i certificati sono scaricabili nell'area di download sul sito ABB.

SensyTemp TSA101

Modello di base	TSA101	хх	ХX	хх	хх	хх	хх	ХX
Sensore di misura intercambiabile SensyTemp TSA101, per termometri a resistenza e								
termocoppie								
Protezione antideflagrante/approvazioni	-	_		-	-		-	
Senza		Υ0						
Sicurezza intrinseca ATEX II 1 G Ex ia IIC T6T1 Ga oppure II 2 G Ex ib IIC T6T1 Gb oppure								
II 1/2 G Ex ib IIC T6T1 Ga/Gb		A1						
Protezione antideflagrante polvere ATEX: Zona 20: II 1D Ex ta IIIC T133 T400 Da,								
Zona 20/21: II 1/2 D Ex ta/tb IIIC T133 T400 Da/Db		A3*						
Protezione antideflagrante polvere o sicurezza intrinseca ATEX: Zona 20 / Zona 0: II 1D Ex ta IIIC								
T133 T400 Da oppure II 1 G Ex ia IIC T6T1 Ga (non per l'impiego in miscele ibride								
potenzialmente esplosive)		A4*						
Custodia pressurizzata ATEX II 1/2 G Ex db IIC T6/T4 Ga/Gb		A5						
Sicurezza antiscintilla, sicurezza aumentata e protezione antideflagrante polvere								
ATEX II 3 G Ex nA IIC T6T1 Gc, ATEX II 3 G Ex ec IIC T6T1 Gc e ATEX II 3 D Ex tc IIIB T133°C Dc		B1**						
Protezione antideflagrante polvere o custodia pressurizzata ATEX: Zona 20 / Zona 1/0: Il 1D Ex ta								
IIIC T133 T400 Da oppure II 1/2 G Ex db IIC T6/T4 Ga/Gb (non per l'impiego in miscele ibride								
potenzialmente esplosive)		B5*						
Protezione antideflagrante polvere ATEX: Zona 21: II 2D Ex tb IIIC T133 T400 Db		D5***						
Protezione antideflagrante polvere o sicurezza intrinseca ATEX: Zona 21 / Zona 0: II 2D Ex tb IIIC								
T133 T400 Db oppure II 1 G Ex ia IIC T6 Ga (non per l'impiego in miscele ibride potenzialmente								
esplosive)		D6***						
Protezione antideflagrante polvere o custodia pressurizzata ATEX: Zona 21 / Zona 1/0: Il 2D Ex tb								
IIIC T133 T400 Db oppure II 1/2 G Ex db IIC T6/T4 Ga/Gb (non per l'impiego in miscele ibride								
potenzialmente esplosive)		D8***						
Sicurezza intrinseca IECEx ia IIC T6T1 Ga		H1						
Sicurezza intrinseca IECEx ib IIC T6T1 Gb o IECEx ib IIC T6T1 Ga/Gb		H2						
Custodia pressurizzata IECEx db IIC T6/T4 Ga/Gb		H5						
Grado di protezione antideflagrante polvere IECEx: Zona 20: Ex ta IIIC T133 T400 Da, Zona								
20/21: Ex ta/tb IIIC T133 T400 Da/Db		J9*						
Protezione antideflagrante polvere IECEx Zona 21: Ex tb IIIC T133 T400 Db		J5***						
Sicurezza intrinseca secondo raccomandazione NAMUR NE 24 e ATEX II 1 G Ex ia IIC T6T1 Ga		N1						
GOST Russia - omologazione metrologica		G1						
GOST Russia - omologazione metrologica e sicurezza intrinseca EAC-Ex, Ex i - Zona 0		P2						
GOST Russland - omologazione metrologica ed EAC-Ex, Ex d		P3						
GOST Russia - omologazione metrologica ed EAC-Ex, Ex polvere		P4						
GOST Kazakistan - omologazione metrologica		G3						
GOST Kazakistan - omologazione metrologica e sicurezza intrinseca EAC-Ex, Ex i - Zona 0		T2						
GOST Kazakistan - omologazione metrologica ed EAC-Ex, Ex d		Т3						
GOST Kazakistan - omologazione metrologica ed EAC-Ex, Ex polvere		T4						

Non con TTH300, non con display LCD, trasduttore di misura solo con protocollo HART

Continua a pagina seguente

^{**} L'impiego in miscele ibride esplosive (presenza contemporanea di polveri e gas esplosivi) non è attualmente consentito in base alla norme EN 60079-0 ed EN 60079-31.

^{***} Trasduttore di misura solo con protocollo HART

Modello di base	TSA101	XX	хх	хх	ХX	ХХ	XX	XX
Protezione antideflagrante / omologazione (continua)								
GOST Bielorussia - omologazione metrologica		M5						
GOST Bielorussia - omologazione metrologica e sicurezza intrinseca EAC-Ex, Ex i - Zona 0		U2						
GOST Bielorussia - omologazione metrologica ed EAC-Ex, Ex d		U3						
GOST Bielorussia - omologazione metrologica ed EAC-Ex, Ex polvere		U4						
Grado di protezione antideflagrante sicurezza intrinseca NEPSI Ex ia IIC T6 Ga		S1						
Grado di protezione antideflagrante custodia pressurizzata NEPSI: Ex db IIC T6/T4 Ga/Gb		S 2						
Tipo di kit di misura			,					
Termometro a resistenza, TFS, versione base, campo di misura da -50 a 400 °C (da-58 a 752 °F), 1	l0 g		S1					
Termometro a resistenza, TFS, resistenza alle vibrazioni rafforzata, campo di misura da -50 a 400	°C (da							
−58 a 752 °F), 60 g			S2					
Termometro a resistenza, TFA, campo di misura ampliato da -196 a 600 °C (da-321 a 1112 °F), 10 g	9		D1					
Termometro a resistenza, TFA, resistenza alle vibrazioni rafforzata,								
campo di misura ampliato da -196 a 600 °C (da-321 a 1112 °F), 60 g			D3					
Termometro a resistenza, tarabile, codice di omologazione 000/308			E1					
Termometro a resistenza, TFA, campo di misura ampliato da -196 a 800 °C (da-321 a 1472 °F)			D8					
Termometro a resistenza, con controllo preliminare dell'ufficio pesi e misure, temperature appare	enti al							
controllo preliminare -10 °C e +50 °C, codice di omologazione 000/308			E2					
Termocoppia			T1					
Altri			Z 9					
Diametro del kit di misura								
3 mm				D3				
4,5 mm				D4				
6 mm				D6				
8 mm				D8				
8 mm, punta con boccola calettata, DIN 43735 boccola 80 mm (WTH), 20 mm (TE)				Н8				
10 mm, punta con boccola calettata, boccola 80 mm (WTH), 20 mm (TE)				Н1				
Altri				Z 9				
Tipo di sensore e di circuito					,			
1 × Pt100, 2 fili					P1			
1 × Pt100, 3 fili					P2			
1 × Pt100, 4 fili					P3			
2 × Pt100, 2 fili					P4			
2 × Pt100, 3 fili					P5			
2 × Pt100, 4 fili (con trasduttore di misura integrato è collegato solo un Pt100)					P6			
1 × Pt1000, 2 fili					P8			
1 × Pt1000, 3 fili					P7			
1 × Pt1000, 4 fili					P9			
1 × tipo K (NiCr-NiAl)					K1			
2 × tipo K (NiCr-NiAl)					K2			
3 × tipo K (NiCr-NiAl)					K3			
1 × tipo J (Fe-CuNi)					J1			
2 × tipo J (Fe-CuNi)					J2			
1 × tipo L (Fe-CuNi)					L1			
2 × tipo L (Fe-CuNi)					L2			
1 × tipo N (NiCrSi-NiSi)					N1			
2 × tipo N (NiCrSi-NiSi)					N2			
1 × tipo T (Cu-CuNi)					T1			
2 × tipo T (Cu-CuNi)					T2			
1 × tipo E (NiCr-CuNi)					E1			
2 × tipo E (NiCr-CuNi)					E2			
•					S1			
1 × tipo S (Pt10Rh-Pt)								
1 × tipo S (Pt10Rh-Pt) 2 × tipo S (Pt10Rh-Pt)					S2			

... Informazioni per l'ordine

Modello di base	TSA101	XX	XX	XX
Precisione del sensore				
Classe di precisione B secondo IEC 60751		B2		
Termoresistenza a filo avvolto, sensore doppio, classe di precisione A secondo IEC60751, campo di misura da 0 a 250 °C				
(da 32 a 482 °F)		D2		
Termoresistenza a filo avvolto, classe di precisione A secondo IEC 60751, campo di misura da –100 a 450°C (da –148 a 842°	°F)	D1		
Termoresistenza a film sottile, classe di precisione A secondo IEC 60751, campo di misura da -30 a 300 °C (da -22 a 572 °F)		S1		
Termoresistenza a film sottile, classe di precisione AA secondo IEC 60751, campo di misura da 0 a 100 °C (da 32 a 212 °F)		S 3		
Termocoppia, classe di precisione 2 secondo IEC 60584		T2		
Termocoppia, classe di precisione 1 secondo IEC 60584		T1		
Termocoppia, standard classe di precisione secondo ANSI MC 96.1		T4		
Termocoppia, classe di resistenza speciale secondo ANSI MC 96.1		T3		
Altri		Z 9		
unghezza del kit di misura				
M = 245 mm			S2	
M = 255 mm			M1	
M = 270 mm			H1	
M = 285 mm			D1	
M = 300 mm			D2	
M = 315 mm			M2	
M = 330 mm			H2	
M = 355 mm			Н3	
M = 375 mm			D3	
M = 390 mm			D4	
M = 405 mm			М3	
M = 420 mm			H4	
M = 435 mm			D5	
M = 450 mm			D6	
M = 455 mm			H5	
M = 505 mm			Н6	
M = 555 mm			M4	
M = 570 mm			H7	
M = 585 mm			D7	
M = 600 mm			D8	
M = 605 mm			Н8	
M = 1025 mm			M5	
unghezza specifica del cliente			Z 9	
rasduttore di misura				
Senza trasduttore di misura, kit di misura con zoccolo di ceramica				Y
Senza trasduttore di misura, kit di misura con fili di collegamento liberi				Y
TH300 HART, regolabile, uscita da 4 a 20 mA				Н
TTH300 HART-Ex, regolabile, uscita da 4 a 20 mA				H
TTH300 PA, regolabile, uscita PROFIBUS PA				P
TTH300 PA-Ex, regolabile, uscita PROFIBUS PA				P.
TTH300 FF, regolabile, uscita FOUNDATION Fieldbus				F
TTH300 FF-Ex, regolabile, uscita FOUNDATION Fieldbus				F.
ITH200 HART, regolabile, uscita da 4 a 20 mA				
ITH200 HART Ex, regolabile, uscita da 4 a 20 mA				Н.

Informazioni supplementari per l'ordine SensyTemp TSA101

Constructions deltas dettas deltas deltas del constructions	XX	XX	XX	XX
Campo di misura del trasduttore di misura	4.0			
Standard Altri	A0 AZ			
Omologazioni e certificati	AZ	J		
-		C4		
Certificato di fabbrica secondo EN 10204-2.1 della conformità dell'ordine		C4 C6		
Certificato di collaudo secondo EN 10204-3.1 del controllo visivo, dimensionale e funzionale		CC		
Certificato di collaudo secondo EN 10204-3.1, per la tolleranza del sensore		CD		
Certificato di collaudo secondo EN 10204-3.1 per la taratura in fabbrica 1 × Pt100		CE		
Certificato di collaudo secondo EN 10204-3.1 per la taratura in fabbrica 2 × Pt100		CF		
Certificato di collaudo secondo EN 10204-3.1 per la taratura in fabbrica 1 × termocoppia		CF		
Certificato di collaudo secondo EN 10204-3.1 per la taratura in fabbrica 2 × termocoppie				
Taratura DAkkS 1 × Pt100, con certificato di taratura per ogni termometro		CH		
Taratura DAkkS 2 × Pt100, con certificato di taratura per ogni termometro				
Taratura DAkkS 1 × termocoppia, con certificato di taratura per ogni termometro		CK		
Taratura DAkkS 2 × termocoppia, con certificato di taratura per ogni termometro		CL	J	
Numero punti di prova			D1	
l punto			P1	
2 punti			P2	
3 punti			P3	
4 punti			P4	
5 punti			P5	I
Temperature di prova per la taratura del sensore				
Taratura in fabbrica: 0 °C (32 °F)				V1
Taratura in fabbrica: 100 °C (212 °F)				VZ
Taratura in fabbrica: 400 °C (752 °F)				V3
Taratura in fabbrica: 0 °C e 100 °C (32 °F e 212 °F)				V
Taratura in fabbrica: 0 °C e 400 °C (32 °F e 752 °F)				V
Taratura in fabbrica: 0 °C, 100 °C e 200 °C (32 °F, 212 °F e 392 °F)				V7
Taratura in fabbrica: 0 °C, 200 °C e 400 °C (32 °F, 392 °F e 752 °F)				V8
Taratura in fabbrica secondo specifica cliente				Ve
Taratura DAkkS: 0 °C (32 °F)				D:
Taratura DAkkS: 100 °C (212 °F)				D2
Taratura DAkkS 400 °C (752 °F)				D3
Taratura DAkkS 0 °C e 100 °C (32 °F e 212 °F)				D4
Taratura DAkkS: 0 °C e 400 °C (32 °F e 752 °F)				D5
Taratura DAkkS 0 °C, 100 °C e 200 °C (32 °F, 212 °F e 392 °F)				D
Taratura DAkkS: 0 °C, 200 °C e 400 °C (32 °F, 392 °F e 752 °F)				D
Taratura DAkkS secondo specifica cliente				De

... Informazioni per l'ordine

Informazioni supplementari per l'ordine SensyTemp TSA101 (continua)	XX	ХX	ХX)
Kit di misura: messa a terra punto di misura	-			
Punto di misura collegato a terra	J1			
2 sensori di misura accoppiati nel campo da 0 a 100 °C, deviazione <= 0,1 K	J3			
Miglioramento della precisione del sensore su mors. A, da 0 a 600°C	J7			
Miglioramento della precisione del sensore su 1/2 mors. A, da 0 a 100°C, U> 100 mm	Ј8			
Miglioramento della precisione del sensore su 1/2 mors. A, da 0 a 400°C, U> 250 mm	J9			
Kit di misura: altre opzioni				
Altri		JZ		
Lingua della documentazione				
Tedesco			M1	
Inglese			M5	
Targhetta aggiuntiva per il contrassegno				-
Targhetta di acciaio inossidabile con n. TAG				

Trademarks

HART è un marchio registrato della FieldComm Group, Austin, Texas, USA PROFIBUS e PROFIBUS PA sono marchi registrati di PROFIBUS & PROFINET International (PI)

 $\label{thm:control} \mbox{FOUNDATION Fieldbus \`e un marchio registrato di FieldComm Group,} \\ \mbox{Austin, Texas, Stati Uniti.}$

Note

ABB Measurement & Analytics

Per trovare il vostro contatto ABB locale,

www.abb.com/contacts

Per ulteriori informazioni sui prodotti,

www.abb.com/temperature

Ci riserviamo il diritto di apportare variazioni tecniche o modificare senza preavviso i contenuti del presente documento.

In riferimento agli ordini di acquisto, prevalgono i dettagli concordati. ABB non si assume alcuna responsabilità per possibili errori o eventuali omissioni riscontrabili nel presente documento.

Ci riserviamo tutti i diritti del presente documento, della materia e delle illustrazioni ivi contenute. È vietata la riproduzione, la divulgazione a terzi o l'utilizzo dei relativi contenuti in toto o in parte, senza il previo consenso scritto da parte di ABB.