

ABB MEASUREMENT & ANALYTICS | APPLICATION MIGRATION MANUAL

Spirit^{IT} eXLerate

Measurement supervisory software

Upgrade eXLerate 2003 applications to eXLerate 2016

Spirit^{IT} eXLerate Application Upgrade

Introduction

Welcome to the exciting world of Spirit^{IT} eXLerate!

Using SpiritIT eXLerate, you can create your complete real-time HMI applications.

This manual guides you through the steps of upgrading an eXLerate 2003 appliction to eXLerate 2016.

Measurement made easy

For more information

All publications of Spirit^{IT} eXLerate are available for free download from:

eXLerate Installation manual	IM/eXL-EN
eXLerate Configuration manual	CM/eXL-EN
Flow-X function reference manual	CM/FlowX/FR-EN
eXLerate release notes	RN/eXL-EN

Search for

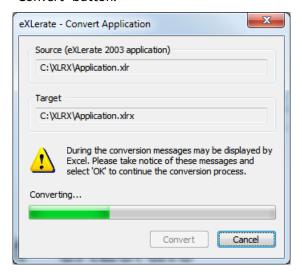
Contents

1.	Migrating to eXLerate 2016	2
1.1.	eXLerate conversion	2
1.2.	Excel conversion	2
2.	Application upgrade	4
2.1.	Flow calculation library	4
2.2.	Miscellaneous functions	5
2.3.	Trend controls	5
2.4.	Databases	5
2.5.	Shapes	6
2.5.1.	Gradient fill	6
2.5.2.	3D effects	7
2	Document revisions	0

Migrating to eXLerate 2016

Spirit^{IT} eXLerate 2016 can open and run Spirit^{IT} eXLerate 2010 applications. Migrating Spirit^{IT} eXLerate 2010 applications to eXLerate 2016 requires no conversion.

Migrating an eXLerate 2003 application to an eXLerate 2016 application requires conversion. Spirit^{IT} eXLerate 2016 is used in combination with Microsoft Excel 365, 2019, or 2016. These Excel versions use an XML file structure. The eXLerate 2003 program was used in combination with Excel 2003, which uses a binary file format. Some steps are automatic and other are manual conversion steps.


The manual steps are required as the recent Microsoft Excel versions need to convert and repair the old Excel file.

1.1. eXLerate conversion

When you open an eXLerate 2003 "XLR" file with Spirit^{IT} eXLerate 2016, eXLerate will offer the possibility to convert the application.

When you click "Yes" the Conversion Wizard is started. The wizard shows the source-file and the destination-file. To start the operation, click the "Convert" button.

During the conversion, Excel will restart several times. Excel might display warnings that it needs to make a change to the workbook in order to convert to the new file-format. For instance, the name "ZZ100" is valid in Excel 2003, but conflicts with a valid range in newer Excel versions. Note the warnings and change the name in your application afterwards so it doesn't conflict with the newer Excel.

The Conversion wizard is automatically started when necessary, but can also be started manually from the Control Center short-cut. Right-click on the shortcut and select "Convert to new application format" from the menu.

Upon success, the Shortcut in the Control Center is automatically updated to refer to the new eXLerate 2016 application file ("XLRX").If the conversion fails, perform the manual steps to convert the application.

1.2. Excel conversion

Due to some Excel version incompatibility related to ActiveX components, some manual actions may be required. If the converted application is giving errors, perform the following manual steps:

- Rename the file extension from "XLRX" into "XLSM";
- Start Excel and open the "XLSM" file;
- Excel might crash while opening and you might see an error message;
- If Excel crashed, re-open Excel without the file.
 Excel will perform an automatic repair;
- Enable the design mode from Developer menu;

Remove the "xlConnect" controls ("xComms" sheet);

- Save the repaired file;
- Insert a new "xlConnect" Active X Control from the Developer menu;

- Save the file;
- Rename the file extension from "XLSM" back to "XLRX";
- Open the application with eXLerate;
- Update the application according the steps in the next sections;

Application upgrade 2.

With the upgrade to eXLerate 2016, functionality has been depreciated and replaced with enhanced components. Once you have converted the application according the steps in the previous chapter, upgrade the application by replacing the obsolete functionality with the improved functionality.

Flow calculation library 2.1.

With eXLerate 2003, xlMath was the library containing the flow calculation functions. In 2009 the Spirit^{IT} Flow-Xpert** library was as its successor. With Spirit^{IT} eXLerate 2016, the xlMath library will become obsolete. Therefore new applications should use the Flow-Xpert functions ("fx" prefix) instead of the xlMath functions ("xl" prefix).

The following table shows the alternative Flow-Xpert functions This table only shows the fι it tŀ

 $x IMass Flow_ISO 5167_Long Radius Nozzle\\$

xlMolarMass_AGA8

xlProp_ISO6976_1995

xlProp_ISO6976_1983

xlComponents_AGA8

xlLegend_AGA10

xlProp_AGA5

xlProp_AGA8

xlProp_NX19

xlProp_SGERG88

xIVOS_GasUnie

xlProp_AGA10

Function	Alternative
xlPseudoComp_AGA8	No alternative available.
xlThermoProp	No alternative available.
xlThermoPropNames	No alternative available.
xlGravity	No alternative available.

Table 1 Flow-Xpert alternatives for xlMath

The xlMath functions xlComponents AGA8 and xlLegend_AGA10 are so-called meta functions. These functions returns name information about a AGA8 and AGA10 components respectively. There are no alternative for these functions in Spirit^{IT} eXLerate 2016. Spirit^{IT} Flow-Xpert contains extensive documentation on components instead.

The tables below list the content of these functions and can be used for migration purposes.

Formula

C1

N2

C2

C3

Rhob

Rhof

iRD

rRD

w

w

Zb

Zf

Fpv

kg/m3

kg/m3

m/s

ft/s

kJ/kg

CO2

Component name

Carbon Dioxide

Methane

Nitrogen

Ethane

conditions

conditions

conditions

conditions

9

10

Mass density at base conditions

Mass density at flowing

Ideal gas relative density

Real gas relative density

Compressibility at base

Compressibility at flow

Supercompressibility

Ideal gas specific enthalpy

Velocity of sound

Velocity of sound

Propane

functions contained in xlMath. Spirit ^{IT} Flow-Xpert itself contains more functions but these surpass the scope of this document.		6	Water	H2O	
		7	Hydrogen Sulphide	H2S	
		8	Hydrogen	H2	
		9	Carbon Monoxide	СО	
Function	Alternative	10	Oxygen	02	
xlApi2540 Density	fxAPI_Dens15C_1980	11	i-Butane	iC4	
xIAPIDens Table5	fxAPI Table5 1980	12	n-Butane	nC4	
xIAPIDens Table6	fxAPI Table6 1980	13	i-Pentane	iC5	
xIAPIDens Table23	fxAPI_Table23_1980	14	n-Pentane	nC5	
xIAPIDens Table24	fxAPI Table24 1980	15	n-Hexane	nC6	
xIAPIDens Table53	fxAPI_Table53_1980	16	n-Heptane	nC7	
xIAPIDens Table54	fxAPI Table54 1980	17	n-Octane	nC8	
xlDensitySolartron7835	fxSolartron Gas M	18	n-Nonane	nC9	
xlGpaTp25 Density	fxAPI_Dens15C_NGL_LPG	19	n-Decane	nC10	
xlLiquidDensity	fxAPI_MPMS_11_3_3_2;	20	Helium	He	
, , , , , , , , , , , , , , , , , , ,	fxEthylene IUPAC C;	21	Argon	Ar	
	fxEthylene_IUPAC_M	Tab	ole 2 xlComponents_AGA8		
xlMassFlow_AGA3	fxAGA3_C		· –		
xlMassFlow_ISO5167_Orifice	fxISO5167_Orifice	No.	Component	Formula	
xlMassFlow_ISO5167_ClassVent	fxISO5167_Venturi		Molecular weight	Mw	kg/kmol
xlMassFlow_ISO5167_VentNozzle	fxISO5167_VenturiNozzle		Molar density at base conditions	Rhob	mol/m3
xlMassFlow_ISO5167_Nozzle	fxISO5167_ISA1932	3	Molar density at flowing	Rhof	mol/m3
	-		conditions		

fxISO5167_LongRadius

fxAGA8_C; fxAGA8_M

fxAGA8_C; fxAGA8_M

fxISO6976_1995_M

fxISO6976_1983_M

fxSGERG_C; fxSGERG_M

universal gas constant:

fxAGA5_C

fxNX19_M

fxAGA10_M

See below

See below

8.31451 J/mol K.

fxAGA10ex_M

No.

2

3

4

No.	Component	Formula	Units
14	Real gas specific enthalpy	Н	kJ/kg
15	Real gas specific entropy	S	kJ/kg/K
16	Ideal gas isobaric heat capacity	Cp0	kJ/kg/K
17	Real gas isobaric heat capacity	Ср	kJ/kg/K
18	Real gas isochoric heat capacity	Cv	kJ/kg/K
19	Ideal gas isobaric heat capacity	Cp0	kJ/kmol/K
20	Real gas isobaric heat capacity	Ср	kJ/kmol/K
21	Real gas isochoric heat capacity	Cv	kJ/kmol/K
22	Ratio of specific heats	Gamma	-
23	Isentropic exponent	Kappa	-
24	Critical flow factor	C*	-
25	Ideal gas specific enthalpy	H0	kJ/kmol
26	Real gas specific enthalpy	Н	kJ/kmol
27	Isentropic ideal gas critical flow	C*i	-
	factor		
28	Isentropic real gas critical flow	CRi	-
	factor		
29	Calculation time	t	mS

Table 3 xlLegend_AGA10

2.2. Miscellaneous functions

The **xlMath** library also contained various general purpose functions. The list below shows the alternatives for these functions in Spirit^{IT} eXLerate 2016.

Function	Alternative
xlTime	exNow
xlBitTest	exBitTest
xlBits2Num	exBits2Num
xlNum2Num	exNum2Num
xlNumBytes	Obsolete
xICRC16	exCRC32
xIEGU	(Flow-Xpert) fxConvertUnit
xlFitValue	exFitValue
xlFitUser	exFitUser
xlFitLin	exFitLin

Table 4 xlMath alternatives

xIMath contained a set of basic trending functions, intended for use in standalone Excel applications without eXLerate. These functions have become obsolete. As an alternative, the eXLerate Trending functionality should be used.

Function
xlTrendValue
xlTrendExtremes
xlTrendTime
xITrend4verage

Table 5 Obsolete trend functions

2.3. Trend controls

Trend controls were introduced and added to Spirit^{IT} eXLerate in 2006. These controls supersede the old trending based on Excel Charts. With Spirit^{IT} eXLerate 2016, the old (legacy)

trending has become obsolete. The new trend controls can be easily added to sheets and forms.

Applications that are already built with the new trend controls (i.e. uses exTrendChart controls) do not require any migration. Applications that are built using the legacy trending module based on Excel Charts, need to be migrated to the new trending module.

To migrate, follow these steps:

- Remove legacy trending worksheet(s)
 (Right-click the worksheet and select "Delete")
- Remove legacy trending functions from button-table
- Run the Button-wizard
 (this removes the legacy trending related functions from modEvents)
- Remove legacy trending 'AutoUpdate' VBA function
- Remove legacy trending worksheet functions
 - exTrendUpdate
 - exTrendData
 - exTrendDataEx
 - exTrendPenInfo
 - exZoomFactor
- Remove legacy trending VBA functions
 - exAutoMoveToEnd
 - exBigZoomIn
 - exBigZoomOut
 - · exHistZoomFactor
 - exMoveBack
 - exMoveFastBack
 - exMoveFastForward
 - exMoveForward
 - exMoveToBegin
 - exMoveToEnd
 - exTrendOptions
 - exZoomIn
 - exZoomOut
- Insert and configure new trend controls on worksheet(s) or user form(s)

2.4. Databases

A new set of generic database functions was introduced in 2006. These functions have the prefix "exSQL" supersede the old-style "exMySQL" worksheet functions. The "exSQL" functions make it possible to communicate with the then newly introduced embedded and external databases. The old-style "exMySQL" functions have become

obsolete. The table below shows the obsolete functions and their alternatives.

exMySQLConnect	exSQLConfigureDatabase
exMySQLCreateQuery	exSQLCreateQuery
exMySQLExecQuery	exSQLExecQuery
exMySQLExecRangeQuery	exSQLExecQuery
exMySQLExecRecordQuery	exSQLExecQuery
exMySQLLastError	exSQLLastError
exMySQLInfo	exSQLDiagnosticalValue
exMySQLPing	exSQLDiagnosticalValue
exMySQLStatus	exSQLDiagnosticalValue
exSQLExecRangeQuery	exSQLExecQuery
exSQLExecRecordQuery	exSQLExecQuery

Table 6 Database functions

2.5. Shapes

In Excel, shapes have undergone a big metamorphosis since Excel 2003. The shapes look nicer and contain a lot more configurable properties.

2.5.1. Gradient fill

Latest Excel versions have more gradient capabilities than Excel 2003 and gradient settings are represented in a different way. Excel 2003 supports one color gradients. Using this feature, you could create a gradient using only one color by setting the darkness of the second gradient color. Gradients in the latest versions are represented as a set of gradient stops which can be added, removed, moved and changed.

When converting an eXLerate 2003 application, Excel automatically converts one color gradients to multi-stop gradients fill. The color of the gradient stops will be set to a fixed color - the color it had at the moment of the conversion. As SpiritIT eXLerate 2016 only animates the first color only, which is the same as in eXLerate 2003, the gradient for the second stop that appears when animating the first color (e.g. from red to blue) may be incorrect. This is because the color of the second gradient stop will not change.

To resolve this issue, set the second gradient stop to a neutral color, for instance: white, black or gray. This will ensure that when animating the first color, the gradient appears correctly.

eXLerate has no automatic gradient fill correction, but below is an example VBA code that you can use to automate the gradients on shapes.

```
'------
'Module: modConvert
'Date: 21/11/14
```

```
'Author:
'Description
   This module can be used to automatically change the color
and
position of gradient stops of shapes
   with 2 or 3 gradient stops. This is necessary for the
' of eXherate 2003 applications.
' The constant lBorderColor is the color used for the
gradient stops
' that are not controlled by animations.
Option Explicit
Public lBorderColor As Long
' This procedure convert all shapes with 2 or 3 gradient
stops
' (also grouped shapes).
' Called after conversion to change the gray color of the
  stops that are not controlled by the animation sheet.
Sub CheckShapes()
     Dim oShape As Shape
    Dim oChild As Shape
Dim oSheet As Worksheet
    Dim vExceptions() As Variant
    On Error Resume Next
     vExceptions = Array("Freeform 998", "Group 6", "Group
         "ButtonFrame", "AlmPrt.SI.Status", "Rectangle 646", "Rectangle 51")
    lBorderColor = RGB(120, 120, 120)
     For Each oSheet In Application. Worksheets
         For Each oShape In oSheet.Shapes
If Not ExactMatch(vExceptions, oShape.Name) Then
                   And
                                 InStr(oShape.Name, "Pipe") = 0
Then
                                 If oChild.Type = msoGroup Then
    oChild.Ungroup
                                      SetGradient oChild, True
                                 End If
                                 SetGradient oChild
                            End If
                       Next oChild
                   ElseIf oShape.Type = msoAutoShape Then
    SetGradient oShape
                   End If
         Next oShape
    Next oSheet
' This procedure converts 1 shape. It does the following:
' - Check if the shape has a gradient
' - If there are 2 gradient stops, it changes the color of
the stop
' that is not controlled by the animation sheet to a gray
color.
' - If there are 3 gradient stops, it switches the positions
     1st and 2nd gradient stop, set the 2nd gradient stop with
the
    original shape color and set the 1st and 3rd stop with
Sub SetGradient(oShape As Shape, Optional bException As
Boolean)
Dim lFillColor As Long
     On Error Resume Next
     With oShape. Fill
              .TwoColorGradient msoGradientHorizontal, 1
              .GradientStops.Insert lBorderColor,
.GradientStops(1).Position = 0.5
              .GradientStops(2).Position = 0
.GradientStops(1).Color = RGB(255, 255, 255)
.GradientStops(2).Color = lBorderColor
               GradientStops(3).Color = lBorderColor
         If .GradientColorType = msoGradientColorMixed Then
         lFillColor = .GradientStops(2).Color
```

```
If .GradientStyle > 0 Then
                 If .GradientStops.Count =
                      .GradientStops(2).Position > ___.GradientStops(1).Position Then
                      .GradientStops(1).Position = 0.5
.GradientStops(1).Color = lFillC
.GradientStops(2).Position = 0
                       .GradientStops(2).Color = lBorderColor
.GradientStops(3).Color = lBorderColor
                ElseIf .GradientStops.Count = 3 And
    .GradientStops(2).Position <= _</pre>
                      .GradientStops(1).Position Then
.GradientStops(2).Color = lBorderColor
.GradientStops(3).Color = lBorderColor
                  lseIf .GradientStops.Count = 2 And _
.GradientStops(1).Color <>
.GradientStops(2).Color = lBorderColor Else
255) Then
                            .Solid
                End If
           End If
     End With
End Sub
'Find an exact match in an array
Function ExactMatch(vItems() As Variant, strSearch As String)
    Boolean
Dim aFilter() As String
     Dim lngUpper As Long
Dim lngLower As Long
     Dim lngIndex As Long
     Dim lngCount As Long
     On Error Resume Next
     aFilter = Filter(vItems, strSearch)
     If Not ArrayEmpty(aFilter) Then
            lngUpper = UBound(aFilter)
lngLower = LBound(aFilter)
                                lngLower To lngUpper
                If aFilter(lngIndex) = strSearch Then
lngCount = lngCount + 1
                End If
            ExactMatch = lngCount <> 0
            ExactMatch = False
     End If
End Function
'Function to check if array is empty
     vArray: Array to check
Function ArrayEmpty(vArray As Variant) As Boolean
On Error Resume Next
     If Not IsArray(vArray) Then ArrayEmpty = True
If UBound(vArray) < LBound(vArray) Then ArrayEmpty = True</pre>
End Function
```

2.5.2. 3D effects

Excel provides the possibility to add effects to shapes. As it is known that shapes with 3D effects may result in memory leaks on runtime-systems, it is recommended to remove all effects from all shapes. eXLerate has no automatic 3D effects removal, but below is an example VBA code that you can use to automate the removal of effects on shapes.

```
Option Explicit
Option Base 0
Option Compare Text
Private Enum msoShapeEffect
msoShapeEffectNone = 0
msoShapeShadow = (2 ^ 0)
msoShapeReflection = (2 ^ 1)
msoShapeGlow = (2 ^ 2)
```

```
msoShapeSoftEdges = (2 ^ 3)
     msoShapeThreeD = (2 ^ 4)
msoShapeEffectAll = (2 ^ 5) - 1
   Loop through all shapes on all sheets and remove the 3D
Sub Remove3d()
     Dim oSheet As Worksheet
Dim oShape As Shape
     For Each oSheet In ActiveWorkbook.Worksheets
For Each oShape In oSheet.Shapes
         parseShape oShape, oSheet.Name & "!"
Next oShape
     Next oSheet
End Sub
  Remove the 3D for the selected shape.
Sub parseShape(oShape As Shape, location As String)
On Error Resume Next
     Select Case oShape. Type
                                      'For groups, parse all child
shapes
              Dim oSubShape As Shape
For Each oSubShape In oShape.GroupItems
                   parseShape oSubShape, location & oShape.Name
              Next oSubShape
               'All childs done, no need to do anything for this
group
Case msoUnbecoment case msoEmbeddedOLEObject
' These types have nothing to reset
'Only Shadow to reset
'Only Shadow to reset
        Case msoOLEControlObject, msoFormControl,
               removeShapeEffects oShape, msoShapeShadow
msoChart 'Chart has no Reflection to
        Case msoChart
reset
                   msoShapeEffectAll - msoShapeReflection
        Case msoAutoShape, msoCallout, msoFreeform, msoLine, msoPicture, msoTextBox removeShapeEffects oShape, msoShapeEffectAll
               ' The rest is not checked as it is not (commonly)
              removeShapeEffects oShape, msoShapeEffectAll
     End Select
End Sub
  Remove the 3D for the selected shape
Private Sub removeShapeEffects(oShape As Shape,
eEffect As msoShapeEffect)
On Error Resume Next
     oShape.Glow.Radius = 0
     If eEffect And msoShapeGlow Then
     If eEffect And msoShapeReflection Then
     oShape.Reflection.Type = msoReflectionTypeNone
End If
     If eEffect And msoShapeShadow Then
          oShape.Shadow.Visible = msoFalse
     If eEffect And msoShapeThreeD Then
          oShape.ThreeD.Visible = msoFalse
          'Resetting 3D still might leave the "Bevel" and
"Material" set
'for some 'Button' shape styles
'So if bevel is available, set shape style to
           mimic the bevel with similar color
          IColor = oShape.Fill.ForeColor
oShape.ShapeStyle = msoShapeStylePreset22
With oShape.Fill.GradientStops
                   End With
          End If
     End If
End Sub
```

3. Document revisions

Revision A November 2011

Initial release for eXLerate 2010 Migration Manual.

Revision B December 2016

- Update to eXLerate 2016.
- Update to ABB lay-out.
- New document code: IN/eXL2016-EN.

Revision C July 2018

- New document code: IN/eXL-EN.
- Reintroduce revisions chapter.
- Provisional support for MS Excel 2019 added.
- Windows 8 removed from software requirements.

Revision D February 2019

- Support for MS Excel 2019 added.
- Added references to Function Reference manual.
- Added 'Required settings' documentation.
- Added information for system administrators for operation system settings for kiosk mode.

Revision E May 2020

- Updated with the manual Excel actions required when conversion fails
- Updated the Application upgrade section
- Updated contact address and added reference to installation manual.

Revision F December 2020

- Layout updates

ABB B.V. **Measurement & Analytics**

Achtseweg Zuid 151A = 5651 GW Eindhoven The Netherlands

Phone: +31 40 236 9445

Mail: nl-spiritit-sales@abb.com

ABB Malaysia Sdn Bhd. **Measurement & Analytics**

Lot 608, Jalan SS 13/1K 47500 Subang Jaya Selangor Darul Ehsan, Malaysia Phone: +60 3 5628 4888

abb.com/midstream

ABB Inc.

Measurement & Analytics

7051 Industrial Boulevard Bartlesville OK 74006 United States of America

Phone: +1 800 442 3097

ABB Limited Measurement & Analytics

Oldends Lane, Stonehouse Gloucestershire, GL10 3TA United Kingdom

Phone: +44 7730 019 180

