
Abmessungen

Abmessungen in mm

Fehleranalyse

Geringe Steilheit oder träge Reaktion	Glassensor-Membran verunreinigt oder bedeckt – entsprechend reinigen
Keine Reaktion auf Pufferlösung	a. Sicherstellen, dass die Sensorverdrahtung richtig angeschlossen ist.b. Überprüfen, dass die Glasmembran nicht defekt oder zerbrochen ist.
Instabile Messwerte	 a. Sicherstellen, dass die Sensorverdrahtung richtig angeschlossen ist. b. Kontaminierte Glasmembran oder Metalloberfläche – entsprechend reinigen. c. Trockenes oder verunreinigtes Referenzdiaphragma – entsprechend reinigen
Stabile aber fehlerhafte Messwerte	a. Neukalibrierung mit frischen Pufferlösungen durchführen. b. Sicherstellen, dass die Membran nicht zerbrochen ist. c. Überprüfen, dass die manuelle Temperatureinstellung korrekt ist oder dass die automatische Kompensation verwendet wird.

Tabelle 2 Anleitung für die Fehleranalyse

Kontakt

ABB Measurement & Analytics

Ihren ABB-Ansprechpartner finden Sie unter: www.abb.de/contacts

Weitere Produktinformationen finden Sie auf: www.abb.com/measurement

3KXA163700R5303

ABB MEASUREMENT & ANALYTICS

700 ULTRA

pH/ORP-Elektrode

Einleitung

Die Elektrode 700 ULTRA pH/ORP ist eine 12 mm-Elektrode, speziell ausgelegt für Anwendungen in der Energie- und Trinkwasserindustrie. Das Durchfluss-Referenzdiaphragma stellt ein sehr stabiles Diffusionspotenzial in hochreinen Anwendungsbereichen sicher. Zusätzliche Hinweise zum Montagezubehör finden Sie in den zugehörigen Veröffentlichungen.

Als Referenz sind die Betriebsbedingungen in Tabelle 1 aufgeführt.

Sensor	Maximaldruck	Temp.bereich1
700 ULTRA/700 ULTRA-D	Atmosphärendruck	–5 bis 100 °C

¹ Abhängig von der gewählten Glaselektrode

Tabelle 1 Betriebsbedingungen

Lagerung und Reinigung

Den Sensor bis zur Verwendung stets in der Originalverpackung aufbewahren. ABB empfiehlt die Aufbewahrung der Elektrode zwischen 15 und 35 °C.

Vor der Inbetriebnahme oder Kalibrierung muss der Sensor mit weichem nicht schleifendem Material und entionisiertem Wasser gereinigt werden. Zusätzliche Reinigungs- und Lageranleitungen entnehmen Sie bitte der Bedienungsanleitung (OI/700-DE).

Durchflusszelle/T-Stück und Prozessanschlüsse

Sensoranschluss an Durchflusszelle/T-Stück und Prozessanschlüsse:

- bei der Verwendung von Gewindedichtmittel/PTFE-Band usw. die Empfehlungen der Hersteller beachten (nicht zu viel Band aufbringen)
- handfest anziehen, plus max. 1 bis 2 Drehungen diese Grenze nicht überschreiten

Auspacken

Erläuterungen zu Abbildung 1:

- Nehmen Sie den Sensor aus der Aufbewahrungsflasche A, indem Sie die Kappe B entfernen und von der Elektrode schieben.
- 2 Stellen Sie sicher, dass der Sensor mit Elektrolyt gefüllt ist. Ziehen Sie die Bedienungsanleitung (OI/700-DE) für Informationen zur Elektrolytwartung.
- 3 Lösen Sie vor der Inbetriebnahme den Lagerstutzen © durch Entfernen der Sensormutter D und Lösen des Klemmrings E vom Seitenarm. Ziehen Sie am Stutzen O, um ihn zu entfernen.

Ziehen Sie das Dokument (IN/ANAINST/040-EN) für zusätzliche Informationen zum Anschluss des Sensors mit dem Behälter und den Durchflusszellen-Baugruppen hinzu.

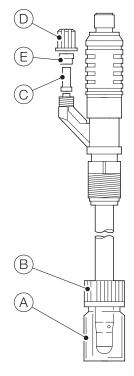
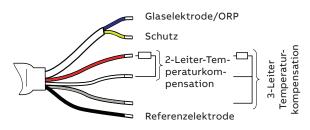


Abbildung 1 Auspacken des Sensors


Elektrische Anschlüsse

Digitaler Sensor

Alle digitalen Sensoren sind mit EZLink-Anschluss ausgestattet.

Analoge Sensoren – pH/ORP mit Temperaturkompensation

Sensoranschlüsse mit Aderendhülsen und VP-Anschlüssen:

Leiterfarbcode	Funktion	
Blau	Glaselektrode/ORP	
Gelb	Schutz	
Schwarz	Referenzelektrode	
Rot	2-Leiter-Kompensation	
Weiß	2-Leiter-Kompensation	
Grau	3. Draht	

Kalibrierung

Das Intervall der Kalibrierung variiert, weil es eine Funktion des Sensormontageortes und des zu messenden Prozesses ist.

Für die Kalibrierung frische Pufferlösungen verwenden. Die Pufferstabilisierung vor dem Akzeptieren des Wertes überprüfen. Kreuzkontamination der Puffer durch Spülen mit entionisiertem Wasser minimieren.

Als zusätzliche Ressource wurde eine Anleitung für die Fehleranalyse beigefügt (Tabelle 2, Rückseite).