

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

ROCKWELL MICRO800 PLC WITH FENA

Purpose:

The Purpose of this Tech Note is to show how to connect a Rockwell Micro800 PLC to a FENA card. The
Micro800 PLCs use explicit messaging only (acyclic). This document will show how to create a new
project and configure the message block to write to assemblies 123 173 on the FENA card.

Step 1:

Create a new project

Select the PLC being used. In our case it is a Micro820.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 2:

Enable EtherNet/IP Communications in the PLC. To do this, click on Ethernet, and then select Configure
IP address and settings. This will be the IP address of the PLC. The subnet will automatically fill out
based on the IP address.

Step 3:

Add a program to the project by right clicking on Programs, highlight add, then New LD: Ladder Diagram.
Then Program can be double clicked to open up the ladder logic.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 4:

Insert the MSG_CIPGENERIC by right clicking on the run and clicking Insert Ladder Elements, then
Instruction Block.

In the search box, type CIP and find the MSG_CIPGENERIC function block and press ok. This will be the
write message to write data to the drive (Assembly 123)

Step 5:

Now define the tags to satisfy the pins on the function block. Right click on each pin and click variable
selector. Then create a name of the tag and leave the type set as default to satisfy the input of the
function block. Do this for each pin. Since this is the data passing to the drive, label it Send_ and then
the pin name. See example below.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Variable Selector:

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 6:

Next, open up the local variables as we need to define the CIP message. To do this, double click on Local
Variables. You will now see all of the tags that were created in the previous step.

Step 7:

Click the + box next to the Send_CtrlCfg. Inside the part of the function block, we need to define how
often the message triggers. For this example, I have it set to 500 ms.

Step 8:

Click the + box next to the Send_AppCfg. This is where we define what we are writing to with the
explicit message. There are 4 pieces of data that we need to define to tell the message what to write to.
We want to write to assembly 123 in this case (13 words). The first thing we need to define is the
Service code. The service code for write is 16. The next thing that gets defined is the class id. This
needs to be set to 4 to write to an assembly. The instance ID is what is set next which is the polling
assembly. I have it set to 123. The last thing that needs to be set is the attribute. This needs to be set
to 3 to write to the assembly. No matter what assembly you are using (ODVA or ABB Drives Profile) this
setup is the same except for the output assembly number in the instance. That will change depending
on what assemblies you are using (i.e if using 102 and 152 ABB Drives Profile, this would be set to 102).

Note: This data size will be different depending on the assembly used. For a list of the assemblies
available see the Basic Guide to Communications ODVA or the FENA-01/11/21 user manual.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 9:

Click the + box next to the Send_TargetCfg. This is where the drives IP address is defined and the
connection type is set. I have set the IP address for the drive as 192.168.3.92. The format for the
destination path is ‘4,192.168.3.92’. If the apostrophe is not on either side, it will not connect. Also it
needs to say 4 comma then the IP address. The 4 stands for the port it is going out. 4 is the standard
port for the Micro800 PLC.

Step 10:

Define the data size sent to the drive. An array needs to be setup for the correct size data of the
assembly that we are writing to. In our case it is 123 which is 13 words. The Send_Reqdata tag that we
created is the data that is going to be sent to the drive and it is in USINT (Unsigned Single Integer or a
byte). So we have to make this a size of 26 as there are 2 bytes in a word and 13 words. Click in the
dimension column and change it so it reads 1..26.

Step 11:

Now we need to tell the message how many bytes we are sending in the Send_Reqlength. This will need
to match the size that we defined for the array in step 10 which was 26. In the Project Value column,
type in 26.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 12:

Now that the connection for the data sent to the drive is setup, we need to define the data read or
received from the drive. Go back to the main program by double clicking on your program in the tree
and then right click on the blue column with a 1 in it and select insert rung below.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 13:

Repeat step 4 to add another CIP message but this time to new rung 2. After the message in inserted,
define all of the pins like we did in step 5, but start them with Receive_ and then the pin name.

Step 14:

Now we need to open the local variables to define the receive message.

Now repeat steps 7, 8 and 9 but this time modify the Receive tags not the Send. These 3 tags will be
setup the same with exception to Receive_AppCfg. The only thing that will change in Receive_AppCfg is
the assembly number and service code. This will need to be changed to 173 for the read assembly
number and the service code will be 14. The Receive_CtrlCfg and the Receive_TargetCfg will be setup
the same and the Send tags with the same name.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 15:

Now we need to define the receive data array. When the message is doing a read function, the data is
put into ResData instead of ReqData. So we need to change the array size of the Receive_ResData tag to
match the assembly size 173 (13 words or 26 bytes). So we need to change it to 26.

Also, the Receive_ResLength needs to be set to 26 as well to tell the message the correct size.

Note: This data size will be different depending on the assembly used. For a list of the assemblies
available see the Basic Guide to Communications ODVA or the FENA-01/11/21 user manual.

Step 16:

Now that the read and write messages are setup, we need to be able to send the start command and
speed reference to the drive as well as read the speed back from the drive. Since the data that is being
written to the drive and read from the drive is an array of bytes, we have to use the copy function to
copy a tag into the array and copy data from the array to a tag as the data we will be reading and writing
are words, not bytes. Create the tags below by going to the local variables and right click on the last
blue block to the left of the tags and click insert record.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 17:

Go back to the main program and add a rung below rung 2. This will add a 3rd rung to the program.

Once this is inserted, add a copy instruction to rung 3 by right clicking on the rung and selecting insert
ladder elements: instruction block.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Once you click instruction block, type COP on the search box and select the copy block and double click
it.

The copy block will now be in your program in rung 3.

Step 18:

Next we need to define the data we want to copy and where we want to send it to. For this first copy
block, we will copy the speed reference word that we created into the 3rd and 4th bytes into the array we
created to send data to the drive. The speed reference is always the second word sent to the drive, as
the first word sent is the control word. We will write logic for that later.

On the Src pin, click in the box and start typing Speed_Reference. Once it comes up double click it and it
will show as the tag assigned to that pin.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Next for SrcOffset, we need to set this to a value of 0 as we need to write the whole word to the array.
For the Dest pin, type in Send_Reqdata as we need to put the array here we are writing the speed
reference to. For the DestOffset, we need to set this to 2 as we need to copy the Speed_Reference word
into bytes 3 and 4 of the array. For the Length, this also needs to be set to 2 as it is a length of 2 bytes.
Swap needs to be set to true which swaps bytes according to data type. The only time you want to set
this to false, is if the data type is STRING or if the source and destination are both 1 byte in length. Next
is the status bit so we have to search for the status bit that was created in step 16 for the speed
reference.

The speed reference can then be written to the Speed_Reference tag which will be passed to the array
to the drive.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

Step 19:

Repeat Step 17 and 18 and create another copy block. This next block will be for the speed feedback.
This will pull bytes 3 and 4 from the array (bytes 3 and 4 are the speed feedback and bytes 1 and 2 are
the speed ref) and move them into the speed feedback word that we created earlier. SrcOffset is now 2
because we are pulling bytes 3 and 4 and DestOffset is 0 as we are writing to the speed feedback word
with a length of 1 word.

The speed the drive is running at will now be in the speed feedback tag.

Step: 20

Now insert logic below to control start forward, start reverse, and fault reset.

This will turn on bit 0 for forward, bit 1 for reverse, and bit 2 for a fault reset as we are writing to the
first 3 bits in the control word which is byte 1 of the array.

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

To map additional data (i.e. motor current, dc bus voltage, accel time, etc.) a copy function will have to
be inserted that will either move data into the array or pull data out of the array into a word. Since the
FENA can pass 13 words in/out (with largest assembly), the data will be in the order below:

Status Word Control Word

Speed Feedback Speed Reference

Torque Feedback Reference 2

Drive Parameter 52.01 Drive Parameter 53.01

Drive Parameter 52.02 Drive Parameter 53.02

Drive Parameter 52.03 Drive Parameter 53.03

Drive Parameter 52.04 Drive Parameter 53.04

Drive Parameter 52.05 Drive Parameter 53.05

Drive Parameter 52.06 Drive Parameter 53.06

Drive Parameter 52.07 Drive Parameter 53.07

Drive Parameter 52.08 Drive Parameter 53.08

Drive Parameter 52.09 Drive Parameter 53.09

Drive Parameter 52.10 Drive Parameter 53.10

Since there is 2 bytes in the array for each of the points above, you can determine which word you
would like to read or write and then find the corresponding bytes in the array that you need to copy to
or from. For example if you would like to read DC bus voltage, you would program parameter 52.01 to
DC bus voltage 1.11 and the 4th word back from the PLC would be the DC bus voltage. The copy
message will have to be setup to have an offset 6 as you want to take bytes 7 and 8.

The parameters that need to be setup in the drive are below:

20.01 Ext1 commands Fieldbus A

22.11 Ext1 speed ref1 FB A ref1

50.01 FBA A enable Enable (Option slot number on ACS880)

50.02 FBA A comm loss func Fault

51.02 Protocol/Profile EIP AC/DC

51.04 IP configuration 0 = Static

51.05 IP address 192 First part of the IP address

http://www.abb.us/drives

Author: Bill Nyback- Industrial Application Engineering Date: Jan 4, 2018
External
http://www.abb.us/drives Industry – Industrial

 Document #: LVD-EOTN144U-EN
Revision: B

Product Categories: FENA-XX

51.06 IP address 168 Second part of the IP address

51.07 IP address 3 Third part of the IP address

51.08 IP address 92 Last part of the IP address

51.09 Subnet CIDR 24 Sets the network mask as 255.255.255.0, allowing access only to the last subnet.

51.23 ODVA speed scale 128 Sets the scaling for the ODVA speed reference.

51.27 set to Refresh to save communication settings.

Data other than Status, Speed Fbk, and Torque Fbk needs to be setup in group 52

Data other than Control, Speed Ref, and Ref 2 needs to be setup in group 53

For more information on drive programming see the manuals below.

Documents or other reference material:

FENA-01/-11/-21 Ethernet adapter module user's manual 3AUA0000093568

Basic Guide to Communications ODVA LVD-PNTG03U-EN
(ControlNet, DeviceNet and EtherNet/IP), US

ACS880 Firmware manual 3AUA0000085967

ACS380 Firmware manual 3AXD50000029275

ACS580 Firmware manual 3AXD50000016097

http://www.abb.us/drives

